Fractional and irrational differential systems: approximation and optimization

T. HÉLIE

Collaboration with D.Matignon and R. Mignot

Fractional Derivatives for Mechanical Engineering - State-of-the-art and
 Applications —

- 1 Introduction : zoology and basic ideas
- Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- 4 Applications
 - Fractional systems
 - Irrational systems
- Conclusion and Perspectives

Outline

- 1 Introduction: zoology and basic ideas
- Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- Applications
 - Fractional systems
 - Irrational systems
 - Conclusion and Perspectives

Zoology of Contractional (/Irrational) Syst.

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s) > 0$)
Integrator I _{1/2}	$H_1(s) = 1/\sqrt{s} \ (\to H(s)^2 = 1/s)$
Derivative $\partial_t^{1/2}$	$H_2(s) = \sqrt{s} \ (\rightarrow H(s)^2 = s)$
Frac. Diff. Eq. $(0 < \alpha < 1)$	$H_3(s) = \sum_{q=0}^{Q} s^{q\alpha} / \sum_{p=0}^{P} s^{p\alpha}$
$\sum_{p=0}^{P} \partial_t^{p\alpha} \mathbf{y} = \sum_{q=0}^{Q} \partial_t^{q\alpha} \mathbf{e}$	$ 13(3) - \angle_{q=0} 3 \cdot / \angle_{p=0} 3$

Zoology of Contractional (/Irrational) Syst.

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s) > 0$)
Integrator I _{1/2}	$H_1(s) = 1/\sqrt{s} \ (\rightarrow H(s)^2 = 1/s)$
Derivative $\partial_t^{1/2}$	$H_2(s) = \sqrt{s} \ (\rightarrow H(s)^2 = s)$
Frac. Diff. Eq. $(0 < \alpha < 1)$ $\sum_{p=0}^{P} \partial_t^{p\alpha} \mathbf{y} = \sum_{q=0}^{Q} \partial_t^{q\alpha} \mathbf{e}$	$H_3(s) = \sum_{q=0}^{Q} s^{q\alpha} / \sum_{p=0}^{P} s^{p\alpha}$

	$H_4(s) = 1/\sqrt{s^2 + 1}$
Fract. PDE : $(\partial_z + \partial_t^{1/2})x = 0$ $y(t) = x(z, t), \partial_z x(0, t) = -e(t)$	$H_5(s) = e^{-\sqrt{s}z}/\sqrt{s}$
Flared lossy acoustic pipe	$H_6(s) = 2\Gamma(s)e^{s-\Gamma(s)}/[s+\Gamma(s)]$ with $\Gamma(s) = \sqrt{s^2 + \varepsilon s^{3/2} + 1}$

Zoology of Contractional (/Irrational) Syst.

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s) > 0$)
Integrator I _{1/2}	$H_1(s) = 1/\sqrt{s} \ (\to H(s)^2 = 1/s)$
Derivative $\partial_t^{1/2}$	$H_2(s) = \sqrt{s} \ (\rightarrow H(s)^2 = s)$
Frac. Diff. Eq. $(0 < \alpha < 1)$ $\sum_{p=0}^{P} \partial_t^{p\alpha} \mathbf{y} = \sum_{q=0}^{Q} \partial_t^{q\alpha} \mathbf{e}$	$H_3(s) = \sum_{q=0}^{Q} s^{q\alpha} / \sum_{p=0}^{P} s^{p\alpha}$

Bessel: $\mathbf{y}(t) = [J_0 \star u](t)$	$H_4(s) = 1/\sqrt{s^2 + 1}$
Fract. PDE: $(\partial_z + \partial_t^{1/2})x = 0$ $y(t) = x(z, t), \ \partial_z x(0, t) = -e(t)$	$H_5(s) = e^{-\sqrt{s}z}/\sqrt{s}$
Flared lossy acoustic pipe	$H_6(s) = 2\Gamma(s)e^{s-\Gamma(s)}/[s+\Gamma(s)]$ with $\Gamma(s) = \sqrt{s^2 + \varepsilon s^{3/2} + 1}$

 \rightarrow long memory: $\forall t > 0$, $h_1(t) = 1/\sqrt{\pi t}$, $h_5(t) \sim \sqrt{2/(\pi t)} \cos(t - \pi/4)$

Zoology of (1) Fractional(/Irrational) Syst.

Fractional/Irrational syst.	Transfer fct. (analytic in $\Re e(s) > 0$)
Integrator I _{1/2}	$H_1(s) = 1/\sqrt{s} \ (\to H(s)^2 = 1/s)$
Derivative $\partial_t^{1/2}$	$H_2(s) = \sqrt{s} \ (\rightarrow H(s)^2 = s)$
Frac. Diff. Eq. $(0 < \alpha < 1)$ $\sum_{p=0}^{P} \partial_t^{p\alpha} \mathbf{y} = \sum_{q=0}^{Q} \partial_t^{q\alpha} \mathbf{e}$	$H_3(s) = \sum_{q=0}^{Q} s^{q\alpha} / \sum_{p=0}^{P} s^{p\alpha}$

	$H_4(s) = 1/\sqrt{s^2 + 1}$
Fract. PDE : $(\partial_z + \partial_t^{1/2})x = 0$ $y(t) = x(z, t), \ \partial_z x(0, t) = -e(t)$	$H_5(s) = e^{-\sqrt{s}z}/\sqrt{s}$
Flared lossy acquetic pipe	$H_6(s) = 2\Gamma(s)e^{s-\Gamma(s)}/[s+\Gamma(s)]$ with $\Gamma(s) = \sqrt{s^2 + \varepsilon s^{3/2} + 1}$

- \rightarrow long memory: $\forall t > 0$, $h_1(t) = 1/\sqrt{\pi t}$, $h_5(t) \sim \sqrt{2/(\pi t)} \cos(t \pi/4)$
- \rightarrow singularities of $H_k(s)$: poles and cuts in $\Re e(s) < 0$

Appl

• Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho}e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho} e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$
- For these choices, $\arg \sqrt{s} = \frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ and there is a jump of $H_1(s) = 1/\sqrt{s}$ when s crosses \mathbb{R}^-

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho}e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$
- For these choices, $\arg \sqrt{s} = \frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ and there is a jump of $H_1(s) = 1/\sqrt{s}$ when s crosses \mathbb{R}^-

 \mathbb{R}^- is called a cut of $H_1(s)$ and the jump at $-\xi \in \mathbb{R}^-$ is

$$H_1(-\xi+i0^-)-H_1(-\xi+i0^+)=\frac{i}{\sqrt{\xi}}-\frac{-i}{\sqrt{\xi}}=\frac{2i}{\sqrt{\xi}}$$

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho} e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$
- For these choices, $\arg \sqrt{s} = \frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ and there is a jump of $H_1(s) = 1/\sqrt{s}$ when s crosses \mathbb{R}^-

$$\mathbb{R}^-$$
 is called a cut of $H_1(s)$ and the jump at $-\xi \in \mathbb{R}^-$ is $H_1(-\xi + i0^-) - H_1(-\xi + i0^+) = \frac{i}{\sqrt{\xi}} - \frac{-i}{\sqrt{\xi}} = \frac{2i}{\sqrt{\xi}}$

• Why choosing the cut \mathbb{R}^- (that is $\theta \in]-\pi,\pi]$) ?

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho}e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$
- For these choices, $\arg \sqrt{s} = \frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ and there is a jump of $H_1(s) = 1/\sqrt{s}$ when s crosses \mathbb{R}^-

$$\mathbb{R}^-$$
 is called a cut of $H_1(s)$ and the jump at $-\xi \in \mathbb{R}^-$ is
$$H_1(-\xi + i0^-) - H_1(-\xi + i0^+) = \frac{i}{\sqrt{\xi}} - \frac{-i}{\sqrt{\xi}} = \frac{2i}{\sqrt{\xi}}$$

- Why choosing the cut \mathbb{R}^- (that is $\theta \in]-\pi,\pi]$) ?
 - (i) Causal stable system $\Rightarrow H$ analytic in $\Re e(s) > 0$

- Consider $s = \rho e^{i\theta} \in \mathbb{C}$ with $\rho > 0$ and $\theta \in]-\pi,\pi]$
- $\sqrt{s} = \sqrt{\rho} e^{i\theta/2}$ generalizes the square-root which is positive on $s \in \mathbb{R}^+$
- For these choices, $\arg \sqrt{s} = \frac{\theta}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ and there is a jump of $H_1(s) = 1/\sqrt{s}$ when s crosses \mathbb{R}^-

$$\mathbb{R}^-$$
 is called a cut of $H_1(s)$ and the jump at $-\xi \in \mathbb{R}^-$ is
$$H_1(-\xi + i0^-) - H_1(-\xi + i0^+) = \frac{i}{\sqrt{\xi}} - \frac{-i}{\sqrt{\xi}} = \frac{2i}{\sqrt{\xi}}$$

- Why choosing the cut \mathbb{R}^- (that is $\theta \in]-\pi,\pi]$) ?
 - (i) Causal stable system $\Rightarrow H$ analytic in $\Re e(s) > 0$
 - (ii) It is "natural" to preserve the Hermitian symmetry since a real system $\Rightarrow H_1(\overline{s}) = \overline{H_1(s)}$ in $\Re e(s) > 0$

Let $e_+^t = e^t \mathbf{1}_{\mathbb{R}^+}(t)$ be the causal exponential.

• Causal convolution kernel :
$$h_1(t) = \lim_{\epsilon \to 0^+} \int_{\epsilon = i\infty}^{\epsilon + i\infty} H_1(s) e_+^{st} ds$$

Let $e_{\perp}^{t} = e^{t} \mathbf{1}_{\mathbb{R}^{+}}(t)$ be the causal exponential.

- Causal convolution kernel : $h_1(t) = \lim_{\epsilon \to 0^+} \int_{\epsilon i\infty}^{\epsilon + i\infty} H_1(s) e_+^{st} ds$ Residue theorem : $\frac{1}{2i\pi} \oint_{\mathcal{C}} H_1(s) e_+^{st} ds = \sum_{\gamma \in \mathcal{P}} \operatorname{Res}_{H_1,\gamma} e_+^{\gamma t}$

Let $e^t_{\perp} = e^t \mathbf{1}_{\mathbb{R}^+}(t)$ be the causal exponential.

- Causal convolution kernel : $h_1(t) = \lim_{\epsilon \to 0^+} \int_{\epsilon i\infty}^{\epsilon + i\infty} H_1(s) e_+^{st} ds$ Residue theorem : $\frac{1}{2i\pi} \oint_{\mathcal{C}} H_1(s) e_+^{st} ds = \sum_{\gamma \in \mathcal{P}} \operatorname{Res}_{H_1, \gamma} e_+^{\gamma t}$
- Bromwich contour $C_{R,a,b}$ with $(R,a,b) \rightarrow (+\infty,0^+,0^+)$

Let $e_{\perp}^{t} = e^{t} \mathbf{1}_{\mathbb{R}^{+}}(t)$ be the causal exponential.

- $\begin{array}{l} \bullet \ \ \text{Causal convolution kernel} : h_1(t) = \lim_{\epsilon \to 0^+} \int_{\epsilon i \infty}^{\epsilon + i \infty} H_1(s) \mathrm{e}_+^{st} \mathrm{d}s \\ \bullet \ \ \text{Residue theorem} : \frac{1}{2i\pi} \oint_{\mathcal{C}} H_1(s) \mathrm{e}_+^{st} \mathrm{d}s = \sum_{\gamma \in \mathcal{P}} \mathrm{Res}_{H_1,\gamma} \, \mathrm{e}_+^{\gamma t} \end{array}$
- Bromwich contour $C_{R,a,b}$ with $(R,a,b) \rightarrow (+\infty,0^+,0^+)$

•
$$h(t) + 0 - \int_0^{+\infty} \mu(-\xi) e_+^{-\xi t} d\xi + 0 = 0$$
 with $\mu(-\xi) = \frac{H_1(-\xi + i0^-) - H_1(-\xi + i0^+)}{2i\pi} = \frac{1}{\pi\sqrt{\xi}}$

• Kernel :
$$h_1(t) = \int_0^{+\infty} \mu(-\xi) e_+^{-\xi t} d\xi$$
 with $\mu(-\xi) = \frac{1}{\pi\sqrt{\xi}}$

- Kernel : $h_1(t) = \int_0^{+\infty} \mu(-\xi) \mathrm{e}_+^{-\xi t} \mathrm{d}\xi$ with $\mu(-\xi) = \frac{1}{\pi\sqrt{\xi}}$
- Input/Output system: a continuous aggregation of convolutions with damped exponential

$$y(t) = [h_1 \star e](t) = \int_0^\infty \mu(-\xi) \underbrace{[e_+^{-\xi t} \star_t e(t)]}_{=\phi(-\xi,t)} d\xi$$

- Kernel : $h_1(t) = \int_0^{+\infty} \mu(-\xi) e_+^{-\xi t} d\xi$ with $\mu(-\xi) = \frac{1}{\pi\sqrt{\xi}}$
- Input/Output system : a continuous aggregation of convolutions with damped exponential

$$\mathbf{y}(t) = [h_1 \star e](t) = \int_0^\infty \mu(-\xi) \underbrace{[\mathbf{e}_+^{-\xi t} \star_t e(t)]}_{-\xi(-\xi,t)} d\xi$$

Time-realization :

$$\mathbf{y}(t) = \int_0^{+\infty} \mu(-\xi)\phi(-\xi, t)\mathrm{d}\xi$$

- Kernel : $h_1(t) = \int_0^{+\infty} \mu(-\xi) \mathrm{e}_+^{-\xi t} \mathrm{d}\xi$ with $\mu(-\xi) = \frac{1}{\pi\sqrt{\xi}}$
- Input/Output system: a continuous aggregation of convolutions with damped exponential

$$y(t) = [h_1 \star e](t) = \int_0^\infty \mu(-\xi) \underbrace{[e_+^{-\xi t} \star_t e(t)]}_{-\phi(-\xi t)} d\xi$$

- Time-realization : $\begin{cases} \partial_t \phi(-\xi,t) = -\xi \phi(-\xi,t) + e(t), & \phi(-\xi,0) = 0, \quad \forall \xi > 0 \\ y(t) = \int_0^{+\infty} \mu(-\xi)\phi(-\xi,t) d\xi \end{cases}$
- Transfer function : aggregation of first order systems $F(-\xi,s) = \frac{\Phi(-\xi,s)}{E(s)} = \frac{1}{s+\xi}, \quad \forall \xi > 0$ $H_1(s) = \frac{Y(s)}{E(s)} = \frac{\int_0^{+\infty} \mu(-\xi)\Phi(-\xi,s)d\xi}{E(s)} = \int_0^{+\infty} \mu(-\xi)F(-\xi,s)d\xi$ $= \int_0^{+\infty} \frac{\mu(-\xi)}{s+\xi}d\xi \left(= \frac{1}{\sqrt{s}} \right), \quad \text{for } \Re e(s) > 0$

Summary:

• Determine the singularities (poles and cuts) of H(s).

Summary:

- Determine the singularities (poles and cuts) of H(s).
- Compute their associated residues and jumps

Summary:

- Determine the singularities (poles and cuts) of H(s).
- Compute their associated residues and jumps
- Derive an integral representation from an adapted Bromwich contour and the residue theorem

Summary:

- Determine the singularities (poles and cuts) of H(s).
- Compute their associated residues and jumps
- Derive an integral representation from an adapted Bromwich contour and the residue theorem
- long memory (damping slower than any exponential) → infinite continuous aggregation of exponentials

Summary:

- Determine the singularities (poles and cuts) of H(s).
- Compute their associated residues and jumps
- Derive an integral representation from an adapted Bromwich contour and the residue theorem
- long memory (damping slower than any exponential) → infinite continuous aggregation of exponentials

Questions:

Are such integral representations always well-posed?

Summary:

- Determine the singularities (poles and cuts) of H(s).
- Compute their associated residues and jumps
- Derive an integral representation from an adapted Bromwich contour and the residue theorem
- long memory (damping slower than any exponential) → infinite continuous aggregation of exponentials

- Are such integral representations always well-posed?
- How to perform accurate approximations and simulations in the time domain?

Outline

- Introduction : zoology and basic ideas
- 2 Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- Applications
 - Fractional systems
 - Irrational systems
- **Solution** Conclusion and Perspectives

Definitions

• Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_a^+ := \{\Re e(s) > a\}$,

$$H(s) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} \frac{r_{k,l}}{(s - s_k)^l} + \int_{\mathcal{C}} \frac{M(d\gamma)}{s - \gamma},$$

Definitions

 Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_a^+ := \{\Re e(s) > a\},\$

$$H(s) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} \frac{r_{k,l}}{(s - s_k)^l} + \int_{\mathcal{C}} \frac{M(d\gamma)}{s - \gamma},$$

 which translates in the time domain into the following decomposition of the impulse response:

$$h(t) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} r_{k,l} \frac{1}{l!} t^{l-1} e^{s_k t} + \int_{\mathcal{C}} e^{\gamma t} M(d\gamma), \quad \text{for } t > 0.$$

Appl

Integral representations with poles and cuts

Definitions

 Many transfer functions can be decomposed as follows, in some right-half complex plane $\mathbb{C}_a^+ := \{\Re e(s) > a\},\$

$$H(s) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} \frac{r_{k,l}}{(s - s_k)^l} + \int_{\mathcal{C}} \frac{M(d\gamma)}{s - \gamma},$$

 which translates in the time domain into the following decomposition of the impulse response:

$$h(t) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} r_{k,l} \frac{1}{l!} t^{l-1} e^{s_k t} + \int_{\mathcal{C}} e^{\gamma t} M(d\gamma), \quad \text{for } t > 0.$$

• The integral part can be realized by a dynamical system:

$$\partial_t \phi(\gamma, t) = \gamma \phi(\gamma, t) + u(t), \quad \phi(\gamma, 0) = 0, \qquad \forall \gamma \in \mathcal{C}$$

$$y(t) = \int_{\mathcal{C}} \phi(\gamma, t) M(d\gamma),$$

Some technical conditions

• A well-posedness condition must be fulfilled :

$$\int_{\mathcal{C}} \left| \frac{M(\mathrm{d}\gamma)}{\mathsf{a}+\mathsf{1}-\gamma} \right| < \infty \,.$$

Some technical conditions

• A well-posedness condition must be fulfilled :

$$\int_{\mathcal{C}} \left| \frac{M(\mathrm{d}\gamma)}{a+1-\gamma} \right| < \infty.$$

• When measure M has a density μ , and the curve \mathcal{C} admits a \mathcal{C}^1 -regular parametrization $\xi \mapsto \gamma(\xi)$ which is non-degenerate $(\gamma'(\xi) \neq 0)$, we have :

$$\mu(\gamma) = \lim_{\epsilon \to 0^+} \frac{H(\gamma + i\gamma'\epsilon) - H(\gamma - i\gamma'\epsilon)}{2i\pi}.$$

• A well-posedness condition must be fulfilled :

$$\int_{\mathcal{C}} \left| \frac{M(\mathrm{d}\gamma)}{\mathsf{a}+\mathsf{1}-\gamma} \right| < \infty \,.$$

• When measure M has a density μ , and the curve \mathcal{C} admits a \mathcal{C}^1 -regular parametrization $\xi \mapsto \gamma(\xi)$ which is non-degenerate $(\gamma'(\xi) \neq 0)$, we have :

$$\mu(\gamma) = \lim_{\epsilon \to 0^+} \frac{H(\gamma + i\gamma'\epsilon) - H(\gamma - i\gamma'\epsilon)}{2i\pi}.$$

Note the hermitian symmetry property :

$$H(s) = \overline{H(\overline{s})}, \, \forall s \in \mathbb{C}_a^+$$

Approximation by interpolation of the state

• Approximation of the state $\phi(\gamma, t)$, for $\{\gamma_p\}_{0 \le p \le P+1} \subset \mathcal{C}$ $\widetilde{\phi}(\gamma, t) = \sum_{p=1}^{P} \phi_p(t) \Lambda_p(\gamma)$, where $\phi_p(t) = \phi(\gamma_p, t)$.

Approximation by interpolation of the state

- Approximation of the state $\phi(\gamma, t)$, for $\{\gamma_p\}_{0 \le p \le P+1} \subset \mathcal{C}$ $\widetilde{\phi}(\gamma, t) = \sum_{p=1}^{P} \phi_p(t) \Lambda_p(\gamma)$, where $\phi_p(t) = \phi(\gamma_p, t)$.
- $\{\Lambda_p\}_{1 are cont. piecewise lin. interpolating functions.$

- Approximation of the state $\phi(\gamma, t)$, for $\{\gamma_p\}_{0 \le p \le P+1} \subset \mathcal{C}$ $\widetilde{\phi}(\gamma, t) = \sum_{p=1}^{P} \phi_p(t) \Lambda_p(\gamma)$, where $\phi_p(t) = \phi(\gamma_p, t)$.
- $\{\Lambda_p\}_{1 are cont. piecewise lin. interpolating functions.$
- The corresponding realization reads :

$$\begin{split} \partial_t \phi_{p}(t) &= \gamma_p \, \phi_{p}(t) + u(t), \, 1 \leq p \leq P, \\ \widetilde{y}(t) &= \Re \sum_{p=1}^P \mu_p \, \phi_{p}(t) \quad \text{with } \mu_p = \int_{[\gamma_{p-1}, \gamma_{p+1}]_{\mathcal{C}}} \mu(\gamma) \Lambda_p(\gamma) \mathrm{d}\gamma. \end{split}$$

Approximation by interpolation of the state

- Approximation of the state $\phi(\gamma, t)$, for $\{\gamma_p\}_{0 \le p \le P+1} \subset \mathcal{C}$ $\widetilde{\phi}(\gamma, t) = \sum_{p=1}^{P} \phi_p(t) \Lambda_p(\gamma)$, where $\phi_p(t) = \phi(\gamma_p, t)$.
- $\{\Lambda_p\}_{1 \le p \le P}$ are cont. piecewise lin. interpolating functions.
- The corresponding realization reads :

$$\partial_{t}\phi_{p}(t) = \gamma_{p} \phi_{p}(t) + u(t), \ 1 \leq p \leq P,$$

$$\widetilde{y}(t) = \Re \sum_{p=1}^{P} \mu_{p} \phi_{p}(t) \quad \text{with } \mu_{p} = \int_{[\gamma_{p-1}, \gamma_{p+1}]_{C}} \mu(\gamma) \Lambda_{p}(\gamma) d\gamma.$$

• The corresponding transfer function has the structure :

$$\widetilde{H}_{\mu}(s) = \frac{1}{2} \sum_{p=1}^{P} \left[\frac{\mu_p}{s - \gamma_p} + \frac{\overline{\mu_p}}{s - \overline{\gamma_p}} \right]$$

Approximation by interpolation of the state

- Approximation of the state $\phi(\gamma, t)$, for $\{\gamma_p\}_{0$ $\widetilde{\phi}(\gamma,t) = \sum_{p=1}^{p} \phi_p(t) \Lambda_p(\gamma)$, where $\phi_p(t) = \phi(\gamma_p,t)$.
- $\{\Lambda_p\}_{1 are cont. piecewise lin. interpolating functions.$
- The corresponding realization reads :

$$\partial_{t}\phi_{p}(t) = \gamma_{p} \phi_{p}(t) + u(t), \ 1 \leq p \leq P,$$

$$\widetilde{y}(t) = \Re \sum_{p=1}^{P} \mu_{p} \phi_{p}(t) \quad \text{with } \mu_{p} = \int_{[\gamma_{p-1}, \gamma_{p+1}]_{\mathcal{C}}} \mu(\gamma) \Lambda_{p}(\gamma) d\gamma.$$

The corresponding transfer function has the structure :

$$\widetilde{H}_{\mu}(s) = rac{1}{2} \sum_{p=1}^{P} \left[rac{\mu_p}{s - \gamma_p} + rac{\overline{\mu_p}}{s - \overline{\gamma_p}}
ight]$$

Convergence results can be proved, as dim. P → ∞.

Outline

- Introduction : zoology and basic ideas
- Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- Applications
 - Fractional systems
 - Irrational systems
- **Solution** Conclusion and Perspectives

Optimization in the frequency domain, stemming from

$$\widehat{h}(f) = \lim_{\epsilon \to 0^+} H(\epsilon + 2i\pi f)$$

Optimization in the frequency domain, stemming from

$$\widehat{h}(f) = \lim_{\epsilon \to 0^+} H(\epsilon + 2i\pi f)$$

Norms in L², or Sobolev spaces H^s, are defined as :

$$||h||_{H^{\mathbf{S}}(\mathbb{R}_t)}^2 = \int_{\mathbb{R}_t} w_{\mathbf{S}}(f) |H(2i\pi f)|^2 df$$
, with $w_{\mathbf{S}}(f) = (1+4\pi^2 f^2)^{\mathbf{S}}$.

where $s \in \mathbb{R}$ tunes the balance between low and high frequencies.

Optimization in the frequency domain, stemming from

$$\widehat{h}(f) = \lim_{\epsilon \to 0^+} H(\epsilon + 2i\pi f)$$

Norms in L², or Sobolev spaces H^s, are defined as:

$$||h||_{H^{\mathbf{S}}(\mathbb{R}_t)}^2 = \int_{\mathbb{R}_t} w_{\mathbf{S}}(f) |H(2i\pi f)|^2 df$$
, with $w_{\mathbf{S}}(f) = (1+4\pi^2 f^2)^{\mathbf{S}}$.

where $s \in \mathbb{R}$ tunes the balance between low and high frequencies.

 For specific applications, more general frequency dependent weights can be used: bounded frequency range, logarithmic scale, relative error measurement, bounded dynamics... For audio applications, w(f) can be adapted and modified according to the following requirements :

1 a bounded frequency range $f \in [f^-, f^+] : w(f) \mathbf{1}_{[f^-, f^+]}(f)$;

Building up specific weights for audio applications

For audio applications, w(f) can be adapted and modified according to the following requirements :

- **1** a bounded frequency range $f \in [f^-, f^+]$: $w(f) \mathbf{1}_{[f^-, f^+]}(f)$;
- 2 a frequency log-scale : w(f)/f;

For audio applications, w(f) can be adapted and modified according to the following requirements :

- **1** a bounded frequency range $f \in [f^-, f^+]$: $w(f) \mathbf{1}_{[f^-, f^+]}(f)$;
- 2 a frequency log-scale : w(f)/f;
- **3** a relative error measurement : $w(f)/|H(2i\pi f)|^2$

Building up specific weights for audio applications

For audio applications, w(f) can be adapted and modified according to the following requirements :

- **1** a bounded frequency range $f \in [f^-, f^+]$: $w(f) \mathbf{1}_{[f^-, f^+]}(f)$;
- 2 a frequency log-scale : w(f)/f;
- **3** a relative error measurement : $w(f)/|H(2i\pi f)|^2$
- **3** a relative error on a bounded dynamics : $w(f)/(\operatorname{Sat}_{H,\Theta}(f))^2$ where the saturation function $\operatorname{Sat}_{H,\Theta}$ with threshold Θ is defined by

$$\mathsf{Sat}_{H,\Theta}(f) = \left\{ egin{array}{ll} |H(2i\pi f)| & \mathsf{if} \ |H(2i\pi f)| \geq \Theta_H \ \Theta_H & \mathsf{otherwise} \end{array}
ight.$$

Note: normalization of the samples is desirable in most audio applications, before the sequence is sent to DAC audio converters.

• The regularized criterion reads :

$$C_{R}(\mu) = \int_{\mathbb{R}^{+}} \left| \widetilde{H_{\mu}}(2i\pi f) - H(2i\pi f) \right|^{2} w(f) df + \sum_{p=1}^{P} \epsilon_{p} |\mu_{p}|^{2},$$

• The regularized criterion reads :

$$C_{R}(\mu) = \int_{\mathbb{R}^{+}} \left| \widetilde{H_{\mu}}(2i\pi f) - H(2i\pi f) \right|^{2} w(f) df + \sum_{p=1}^{P} \epsilon_{p} |\mu_{p}|^{2},$$

• Equality constraints for $\widetilde{H_{\mu}}^{(d_j)}$ at prescribed frequency points η_j , $1 \le j \le J$ are taken into account thanks to a Lagrangian $\mathcal{C}_{R,L}$ by adding to \mathcal{C}_R :

$$\Re e \left(\ell^* \left[egin{array}{c} H^{(d_1)}(2i\pi\eta_1) - \widetilde{H_{\mu}}^{(d_1)}(2i\pi\eta_1) \ dots \ H^{(d_J)}(2i\pi\eta_J) - \widetilde{H_{\mu}}^{(d_J)}(2i\pi\eta_J) \end{array}
ight]
ight),$$

Discrete criterion

• Discrete version of the criterion for frequencies increasing from $f_1 = f_-$ to $f_{N+1} = f_+$ is, with $s_n = 2i\pi f_n$:

$$\mathcal{C}(\mu) \approx \sum_{n=1}^{N} w_n \left| \widetilde{H_{\mu}}(s_n) - H(s_n) \right|^2 \text{ with } w_n = \int_{f_n}^{f_{n+1}} w(f) df.$$

• Discrete version of the criterion for frequencies increasing from $f_1 = f_-$ to $f_{N+1} = f_+$ is, with $s_n = 2i\pi f_n$:

$$C(\mu) \approx \sum_{n=1}^{N} w_n \left| \widetilde{H_{\mu}}(s_n) - H(s_n) \right|^2 \text{ with } w_n = \int_{f_n}^{f_{n+1}} w(f) df.$$

In matrix notations, this rewrites

$$\mathcal{C}_{\mathsf{R},\mathsf{L}}(\mu) = ig(\mathbf{M} \mu \! - \! \mathbf{h} ig)^* \mathbf{W} ig(\mathbf{M} \mu \! - \! \mathbf{h} ig) \! + \! \mu^t \mathbf{E} \mu \! + \! \Re ig(\ell^* \left[\mathbf{k} - \mathbf{N} \mu
ight] ig),$$

$$\text{with} \left\{ \begin{array}{ll} \textbf{\textit{M}}: & \text{model} & \textbf{\textit{N}} \times (P + P_2) \\ \textbf{\textit{N}}: & \text{constraint model} & \textbf{\textit{J}} \times (P + P_2) \\ \textbf{\textit{E}}: & \text{regularization} & (P + P_2) \times (P + P_2) \\ \textbf{\textit{W}}: & \text{weights} & \textbf{\textit{N}} \times \textbf{\textit{N}} \\ \textbf{\textit{h}}: & \text{data} & \textbf{\textit{N}} \times \textbf{\textit{1}} \\ \textbf{\textit{k}}: & \text{constaints} & \textbf{\textit{J}} \times \textbf{\textit{1}} \end{array} \right.$$

Closed-form solution

• If J = 0 (no constraint), the solution reduces to

$$\mu = \mathcal{M}^{-1}\mathcal{H}$$
,

where
$$\mathcal{M} = \Re e \left(\mathbf{M}^* \mathbf{W} \mathbf{M} + \mathbf{E} \right)$$
 and $\mathcal{H} = \Re e \left(\mathbf{M}^* \mathbf{W} \mathbf{h} \right)$.

• If J = 0 (no constraint), the solution reduces to

$$\mu = \mathcal{M}^{-1}\mathcal{H}$$
,

where $\mathcal{M} = \Re e \left(\mathbf{M}^* \mathbf{W} \mathbf{M} + \mathbf{E} \right)$ and $\mathcal{H} = \Re e \left(\mathbf{M}^* \mathbf{W} \mathbf{h} \right)$.

• For $J \ge 1$, the solution reads :

$$\mu = \mathcal{M}^{-1} \left[\mathcal{H} + \underline{\mathbf{N}}^t \mathcal{N}^{-1} \left(\underline{\mathbf{k}} - \underline{\mathbf{N}} \mathcal{M}^{-1} \mathcal{H} \right) \right],$$

where $\mathcal{N} = \underline{\mathbf{N}} \mathcal{M}^{-1} \underline{\mathbf{N}}^t$ is invertible for non-redundant constraints, and $\left\{ \begin{array}{ll} \underline{\mathbf{N}}^t & \text{denotes} & [\Re(\mathbf{N}^t), \Im(\mathbf{N}^t)] \\ \underline{\mathbf{k}}^t & \text{denotes} & [\Re(\mathbf{k}^t), \Im(\mathbf{k}^t)] \end{array} \right.$.

Outline

- Introduction: zoology and basic ideas
- Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- Applications
 - Fractional systems
 - Irrational systems
- Conclusion and Perspectives

An academic example:

$$H_1(s) = 1/\sqrt{s}, \ \mu_1(-\xi) = 1/(\pi\sqrt{\xi})$$

Top: Interpolation, P = 16. Bottom: Optimization, P = 10.

Left: Interpolation, P = 18. Right: Optimization, P = 18! (...): poles only. (--): cut only. (-): poles and cut.

Appl

$$H_4(s) = 1/\sqrt{s^2 + 1}, \;\; \mu_4^{\pm}(-\xi) = 1/(\pi\sqrt{\xi(\pm 2i - \xi)})$$

Left: Interpolation, P = 10. Right: Optimization, P = 10!

Decomposition into elementary subsystems.

Transfer functions of interest:

- Reflection between p_0^+ and p_0^- .
- Transmission between p_0^+ and p_4 .

Appl

Trumpet-like instrument (II): various choices of the cuts

with 3 Horizontal cuts,

with a Cross cut

• Remark : the values of H(s) in \mathbb{C}_0^+ do not depend on the choice of the cut!

Time-domain representation

Frequency-domain rep.

Appl

Real-time simulations in Pure-Data environment on optimized models with $P \le 10$ for each quadripole Q_k : bounded freq. range, log-scale & relat. error.

Outline

- 1 Introduction: zoology and basic ideas
- Systems under consideration
 - Integral representations with poles and cuts
 - Finite-dimensional approximation by interpolation
- Specialized optimization procedures
 - Functional spaces and measures
 - Regularized criterion with equality constraints
 - Numerical optimization
- Applications
 - Fractional systems
 - Irrational systems
 - Conclusion and Perspectives

Perspectives

• Open question : choice of the cut?

Perspectives

- Open question : choice of the cut?
- Open question : optimal placement of the poles, once the cut has been chosen?

Perspectives

- Open question : choice of the cut?
- Open question : optimal placement of the poles, once the cut has been chosen?
- What can not be represented by poles and cuts?
 - Delay systems stemming from wave propagation phenomena.
 - systems of PDEs with variable coefficients: must be decomposed into subsystems with constant coefficients.

Conclusion

A powerful and very flexible method of simulation of some infinite-dimensional linear systems has been presented: it uses a simple optimization procedure with parameters which are meaningful from a signal processing point of view, and it enables a low cost simulation (both in the frequency domain and in the time domain), even suitable for real-time applications.

Conclusion

- A powerful and very flexible method of simulation of some infinite-dimensional linear systems has been presented: it uses a simple optimization procedure with parameters which are meaningful from a signal processing point of view, and it enables a low cost simulation (both in the frequency domain and in the time domain), even suitable for real-time applications.
- From a a theoretical point of view, this method is based on a representation with poles and cuts, which generalizes the so-called diffusive representations.

Conclusion

- A powerful and very flexible method of simulation of some infinite-dimensional linear systems has been presented: it uses a simple optimization procedure with parameters which are meaningful from a signal processing point of view, and it enables a low cost simulation (both in the frequency domain and in the time domain), even suitable for real-time applications.
- From a a theoretical point of view, this method is based on a representation with poles and cuts, which generalizes the so-called diffusive representations.
- Many such systems, among which fractional differential systems, have been presented here and elsewhere, which clearly illustrates the generality, the flexibility and the power of this method.

Some references

D. G. Duffy, Transform methods for solving partial differential equations, CRC Press, 1994.

O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space. Trans. American Mathematical Society **345**(2) (1994) 527–575.

D. Matignon and G. Montseny (Eds.), Fractional Differential Systems: models, methods and applications, Vol. 5 of ESAIM: Proceedings, SMAI, 1998. http://www.edpsciences.org/articlesproc/Vol.5/

G. Garcia and J. Bernussou, Identification of the dynamics of a lead acid battery by a diffusive model. ESAIM: Proc. 5 (1998) 87-98.

H. Zwart, Transfer functions for infinite-dimensional systems, Systems & Control Letters 52 (3-4) (2004) 247–255.

Some more references

- D. Matignon and H. Zwart, Standard diffusive systems are well-posed linear systems, in Mathematical Theory of Networks and Systems, Leuven, Belgium, july 2004. (invited session).
- Th. Hélie and D. Matignon, Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses, *Mathematical Models and Methods in Applied Sciences* **16** (2006) 503–536.
- R. Mignot, Simulation de propagation d'ondes dans les tubes évasés avec pertes visco-thermiques pour la synthèse sonore en temps réel. Master SDI. Univ. Paris VI. (2005)
- D. Matignon and Ch. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems. *ESAIM*: COCV 11 (2005) 487–507.
- D. Matignon, Asymptotic stability of the Webster-Lokshin model, in Mathematical Theory of Networks and Systems, Kyoto, Japan, july 2006. (invited session)