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• flexible thin-walled structure immersed in viscous fluid flow

• large translations, rotations and deformations of the thin structure

4 A. KÖLKE AND A. LEGAY

Enriched Space-Time (EST) finite element method on the basis of the local partition of unity method
is proposed. It is exemplarily applied to discontinuous velocity/pressure approximations of viscous
flow, wherein a thin flexible structure is embedded. Selected aspects of algorithmic details are given in
section 5. Finally, section 6 introduces several numerical test cases of strongly coupled fluid-structure
interaction problems involving thin rigid and flexible structures with large motion and deformation.

2. STRONG FORM GOVERNING EQUATIONS2.1. Coupled fluid-structure system

The coupled system consists of a thin flexible structure immersed in a fluid as shown in Figure 3.
In comparison to the spatial dimensions of the fluid body the thickness of the solid is assumed to be
very small. Within this paper the case of an embedded structure that divides the flow domain into two
separated parts is considered. A free end of the structure would introduce flow singularities at the tip
that are not within the focus of this paper.

The behavior of the fluid body within the time interval I =]ta, tb] and occupying the space-time
domain Q = Ω× I is described on the current configuration Qt using an Eulerian description. A
Lagrangian description and the reference configuration L0 = Λ0× I is used for the structure. The fluid
domain is bounded by the outer boundary Pt = Γt × I and the evolving interface Rt = Σt × I to the
structure.

s

n

FluidFluid
ΩtΩt

Γt

Γt

Structure
Λ0Λt

Σt Σ0

Figure 3. Configuration of the coupled problem of flow and immersed thin-walled structure at t ∈ I.

Although the discretization of the fluid-structure interaction problem with the EST method is
demonstrated for spatially two-dimensional problems, the approach is applicable to 3D space problems
as well. While within the derivation of the governing equations only one immersed structure is
considered, the method is easily extendable to multiple immersed structures. For simplicity, the
methodology and the applications are restricted to problems where no contact between structures are
expected.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls

3



Governing Equations: Strong Form
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Fluid: incompressible, Newtonian, velocity-pressure based

ENRICHED SPACE-TIME FINITE ELEMENT METHOD FOR FSI 5

2.2. Fluid

Within this paper the flow is modeled as incompressible, viscous and isothermal. The incompressible
Navier-Stokes equations are

ρv,t +ρv · ∇v−∇ · T−ρb = 0 in Qt (1)
∇ · v = 0 in Qt (2)

where v is fluid velocity, b is external volume force and ρ is fluid density. The Cauchy stress tensor T
of the Newtonian fluid is given by the relation

T =−pI+2µD in Qt (3)

where p is hydrostatic pressure, µ is kinematic viscosity and D is the strain rate tensor defined by

D =
1
2
(∇v+(∇v)T ) in Qt . (4)

Dirichlet boundary conditions are defined on Pg
t in terms of imposed velocity v̄

v− v̄ = 0 on Pg
t (5)

while Neumann boundary conditions are defined on Ph
t in terms of the imposed boundary traction t̄

Tn− t̄ = 0 on Ph
t . (6)

The outward normal vector n to the fluid boundary is defined in the current configuration. Furthermore,
Equation (1) requires the definition of an initial velocity field ṽ within Ω(t = ta)

v(t = ta)− ṽ = 0 on Ω(t = ta) (7)

with respect to the incompressibility constraint formulated in Equation (2).

2.3. Thin-walled structure

The structure is assumed to have the fixed and constant but small thickness h. The resulting simplified
plate-like structure is able to show bending behavior and membrane properties, where the cross sections
remain plane and rotate about a defined neutral local axis, but do not remain orthogonal to the deformed
axis (Timoshenko model). Out-of-plane strains are supposed to be zero. Figure 4 shows the structural
model in its reference configuration Λ0 and its current configuration Λt , as well as the main local axis
to that the sectional kinematics, strain and stress measures are related to. The applied plane beam-like
finite element formulation as well as the definition of motion and kinematics has been taken from
Felippa [49].

The one-dimensional structure with local coordinates (X ,Y ) is described in a total Lagrangian setting
by the balance of momemtum

ρGẇ− (Fs),X − (Hs)−ρGb = 0 in L0 (8)

where
w = [vX vY ω ]T (9)

is a vector consisting of local velocities along (X , Y ) and angular velocity. External loads are collected
in vector b = [bX bY bω ]T and ρ is the density of the solid. The resulting internal forces are collected
in the vector

s = [N Q M ]T (10)
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current config. Λt

Π̌t

Π̌tΠ̄t

Π̄t

reference config. Λ0

Π̌0

Π̌0
Π̄0

Π̄0

X ,vX,NY,vY ,Q

ω,Mx1, v1

x2, v2 Idealization of the 3D plane structure:

x1

x2

x3

h
1.0

fluid

Figure 4. Two-dimensional model of a thin-walled plane structure surrounded by a fluid.

where N, Q and M are normal force, shear force and moment, respectively. The geometry of the section
is described by the diagonal matrix

G =




h 0 0
0 h 0
0 0 h3/12



 . (11)

The deformation gradient F is given by

F =




1+uX ,X −sinθ θ,X cosθ

uY,Y cosθ θ,X sinθ
0 0 cosθ +uX ,X cosθ +uY,X sinθ



 (12)

and matrix H is defined as

H =




0 0 0
0 0 0
0 cosθ +uX ,X cosθ +uY,X sinθ θ,X (sinθ +uX ,X sinθ −uY,X cosθ)



 (13)

involving derivatives of the local displacements uX and uY as well as the rotation θ of the cross section.
Since the elasticity matrix

C = G




E 0 0
0 E

2(1+ν) 0
0 0 E



 (14)

with Young’s modulus E and Poisson ratio ν is time-invariant for linear elastic material, the constitutive
relation can be given in rate formulation

C−1ṡ− ė = 0 in L0. (15)
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The vector of local nonlinear strain measures e = [e1 e2 e3]T for a thin structure is defined by

e1 = uX ,X +
1
2
(u2

X ,X +u2
Y,X ) (16a)

e2 =−(1+uX ,X )sinθ +uY,X cosθ (16b)
e3 = θ,X (cosθ +uX ,X cosθ +uY,X sinθ) (16c)

where e1 is the axial strain, e2 is the shear strain and e3 is the curvature. The rate of the introduced
strain measures is summarized in the components of the local strain rate vector ė

ė1 = vX ,X +uX ,X vX ,X +uY,X vY,X (17a)
ė2 = − vX ,X sinθ + vY,X cosθ −ω(cosθ +uX ,X cosθ +uY,X sinθ) (17b)
ė3 = vX ,X θ,X cosθ + vY,X θ,X sinθ

+ω,X (cosθ +uX ,X cosθ +uY,X sinθ)−ωθ,X (sinθ +uX ,X sinθ −uY,X cosθ) (17c)

using the local structural velocities vX , vY and the rotational velocity ω . Structural displacements are
collected in the vector

d = [uX uY θ ]T (18)

and are computed by time integration as follows

d(t) =
t∫

ta

w(τ)dτ (19)

The complete structural boundary is divided into the outer sectional boundary P̌0 = Π̌0 × I and
the boundary P̄0 = Π̄0× I that coincides with the interface to the surrounding fluid domain. On the
Neumann part P̌h

0 of the sectional boundary external forces

s− s̄ = 0 on P̌h
0 (20)

can be imposed. Prescribed generalized boundary tractions t̄ = [t̄X t̄Y t̄ω ]T are defined by

G−1s− t̄ = 0 on P̄h
0 . (21)

Equation (8) requires the definition of an initial velocity field w within Λ(t = ta)

w(t = ta)− w̃ = 0 on Λ(t = ta). (22)

The highly nonlinear strain measures result from considering nonlinear kinematics and allow large
deformations and rotations of the thin-walled structure model.

2.4. Coupling conditions

Flow domain and structural domain are coupled along the common space-time boundary R representing
the fluid-structure interface. At the interface no-slip conditions are applied, requesting mass balance
equivalent here to continuity of fluid and structural velocities

vF−vS = 0 on Rt (23)
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and therefore ensure geometrical conservation. The vector vS contains the velocities (vS
1,v

S
2) of the thin

structure in the global system, obtained by a transformation of the local velocity values (vX ,vY ). Fluid
and solid interfacial tractions have to be of the same magnitude and opposite direction

tF +
dΣ0

dΣt
tS = 0 on Rt (24)

in order to fulfill momentum balance at the interface. The referential solid traction tS is projected
to the current frame. The coupling conditions in Eqs. (23) and (24) represent no-slip conditions at the
interface. Slip interface conditions or frictional effects at the interface can be considered by formulating
the interfacial balance equations in normal and tangential direction.

3. WEAK FORM AND SPACE-TIME FINITE ELEMENT DISCRETIZATION
The following section applies the weighted residual method to the strong form governing equations
for the introduced fluid and structure model (Sections 2.2 and 2.3) as well as the coupling conditions
(Section 2.4). The resulting weak form of the whole coupled system and the space-time domain are then
discretized using the space-time finite element method [50, 51, 52] and a time-discontinuous Galerkin
method for integration in time.

x1

t
x2

Q

ta

tb

x1

t
x2

Qn

tn
tn+1

Figure 5. Discretization of the continuous space-time domain using space-time finite elements.

The basic idea of a space-time discretization is to include the temporal axis in the finite element
discretization. For numerical efficiency the space-time domain Q is divided into a sequence of N time
slabs Qn = Ωn× [tn, tn+1], as shown in Figure 5, which are solved successively.

At time instant tn the energy of the discretized system at the end of the previous time slab t−n has to be
equal to the energy at the beginning of the next time step t+n . For time-discontinuous approximations of
field unknowns this leads to additional jump terms in the weak form. Moreover, spatial discretizations
from t−n and t+n do not need to be conforming. For first order ordinary differential equations the resulting
time integration scheme is A-stable and third-order accurate for linear temporal interpolation.
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3.1. Weak form of fluid

The weighted residual formulation of the strong forms (1-6) for the incompressible viscous fluid in a
space-time slab Qn

t using the Galerkin method reads

∫

Qn
t

δv · ρ(v,t +v · ∇v)dQt +
∫

Qn
t

δD : 2µDdQt −
∫

Qn
t

∇ · (δv) pdQt −
∫

Qn
t

δv · ρbdQt (25a)

+
∫

Qn
t

δ p∇ · vdQt (25b)

−
∫

Pn,g
t

δv · tdPt +
∫

Pn,g
t

δ t · (v− v̄)dPt −
∫

Pn,h
t

δv · t̄dPt (25c)

+
∫

Ωn
t

δv(t+n ) · ρ(v(t+n )−v(t−n ))dΩt (25d)

+∑
e

∫

e
Qn

t

(ρδv,t +ρv · ∇(δv)−∇ · (δT)) · τm
1
ρ

(ρv,t +ρv · ∇v−∇ · T−ρb)dQt (25e)

+∑
e

∫

e
Qn

t

∇ · (δv) · τc ρ ∇ · vdQt = 0 ∀δv,δ p,δ t. (25f)

Line (25a) represents the weak form of conservation of momentum (1), fulfilling the constitutive
relation (3) for the Newtonian fluid and the kinematics (4) exactly. The incompressibility constraint (2)
is weighted with the pressure in line (25b). Dirichlet and Neumann boundary conditions are imposed
in a weak sense with line (25c), wherein the first two terms vanish if (5) is treated as an essential
boundary condition. Line (25d) ensures the consistent transfer of kinetic energy from the previous
time slab end at t−n to the current time slab at t+n . The weighted residual form is stabilized by a
Galerkin/least squares term [53] of the momentum balance in line (25e) and of the continuity equation
in line (25f). The Galerkin/least squares stabilization suppresses numerical oscillations in solutions to
hyperbolic differential equations by the introduction of additional numerical diffusion and allows the
application of equal order approximations of velocities and pressure for the incompressible flow field.
The stabilization parameters τm and τc are determined for each element e using the definition given by
Tezduyar et al. [30].
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3.2. Weak form of thin-walled structure

The weighted residual formulation of the geometrically nonlinear, linear elastic thin-walled structure
on slab Ln

0 = Λ0× [tn, tn+1] using the Galerkin method
∫

Ln
0

δw · ρGẇdX +
∫

Ln
0

δ ė · sdX−
∫

Ln
0

δw · ρGbdX (26a)

+∑
e

∫

Ln
0

δ s · (C−1ṡ− ė)dX (26b)

− [δw · s̄]P̌n,h
0

(26c)

−
∫

P̄n,h
0

δw · t̄dX (26d)

+
∫

Ln
0

δw(t+n ) · ρG(w(t+n )−w(t−n ))dX (26e)

+
∫

Ln
0

δ s(t+n ) · C−1 (s(t+n )− s(t−n ))dX = 0 ∀δw,δ s. (26f)

applies the local quantities for kinematics and forces introduced in Section 2.3 and describes the
elastodynamics of the thin solid in terms of local velocities (vX , vY ) and rotational velocity ω . Line
(26a) gives the integral form of momentum balance after partial integration utilizing the nonlinear
strain rate ė. Local displacements (uX , uY ) and the angle of rotation θ are obtained using Eq. (19).
The linear elastic material is considered in integral form by line (26b) on element level leading to a
mixed formulation. The local forces in s are condensed on the element resulting in a mixed hybrid
method. Sectional natural boundary conditions can be imposed weakly with line (26c), while boundary
tractions (from the surrounding fluid) along the axis are considered by line (26d). Kinetic energy is
transfered weakly between time slabs with the jump term in line (26e) and internal mechanical energy
is conserved in integral form between time slabs by (26f).

3.3. Coupling conditions

The coupling model expressed by the interfacial conditions can be introduced using various methods.
Penalty methods add the constraints to the set of discrete equations and weight them by a factor β ,
providing a certain amount of accuracy, avoiding additional degrees of freedom. However the heuristic
factor considerably increases the condition number of the algebraic system. Alternatively, the method
of Lagrange multipliers can be used.

The weighted residual based formulation of the coupling conditions (23) and (24) utilizes interfacial
tractions as additional Lagrange multipliers in order to fulfill geometrical continuity and conservation
of momentum between fluid and structure. The structural velocities vS are used to formulate Dirichlet
boundary conditions for the fluid, while interface tractions tF of the fluid act as surface load in form of
a Neumann condition onto the deformed local axis of the thin solid

+
∫

Rn
t

δ tF · (vF−vS)dR−
∫

Rn
t

δvF · tF dR+
∫

Rn
t

δvS · tF dR (27)
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3.2. Weak form of thin-walled structure

The weighted residual formulation of the geometrically nonlinear, linear elastic thin-walled structure
on slab Ln

0 = Λ0× [tn, tn+1] using the Galerkin method
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0

δw · ρGẇdX +
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0

δ ė · sdX−
∫

Ln
0

δw · ρGbdX (26a)

+∑
e

∫

Ln
0

δ s · (C−1ṡ− ė)dX (26b)

− [δw · s̄]P̌n,h
0

(26c)

−
∫

P̄n,h
0

δw · t̄dX (26d)

+
∫

Ln
0

δw(t+n ) · ρG(w(t+n )−w(t−n ))dX (26e)

+
∫

Ln
0

δ s(t+n ) · C−1 (s(t+n )− s(t−n ))dX = 0 ∀δw,δ s. (26f)

applies the local quantities for kinematics and forces introduced in Section 2.3 and describes the
elastodynamics of the thin solid in terms of local velocities (vX , vY ) and rotational velocity ω . Line
(26a) gives the integral form of momentum balance after partial integration utilizing the nonlinear
strain rate ė. Local displacements (uX , uY ) and the angle of rotation θ are obtained using Eq. (19).
The linear elastic material is considered in integral form by line (26b) on element level leading to a
mixed formulation. The local forces in s are condensed on the element resulting in a mixed hybrid
method. Sectional natural boundary conditions can be imposed weakly with line (26c), while boundary
tractions (from the surrounding fluid) along the axis are considered by line (26d). Kinetic energy is
transfered weakly between time slabs with the jump term in line (26e) and internal mechanical energy
is conserved in integral form between time slabs by (26f).

3.3. Coupling conditions

The coupling model expressed by the interfacial conditions can be introduced using various methods.
Penalty methods add the constraints to the set of discrete equations and weight them by a factor β ,
providing a certain amount of accuracy, avoiding additional degrees of freedom. However the heuristic
factor considerably increases the condition number of the algebraic system. Alternatively, the method
of Lagrange multipliers can be used.

The weighted residual based formulation of the coupling conditions (23) and (24) utilizes interfacial
tractions as additional Lagrange multipliers in order to fulfill geometrical continuity and conservation
of momentum between fluid and structure. The structural velocities vS are used to formulate Dirichlet
boundary conditions for the fluid, while interface tractions tF of the fluid act as surface load in form of
a Neumann condition onto the deformed local axis of the thin solid

+
∫

Rn
t

δ tF · (vF−vS)dR−
∫

Rn
t

δvF · tF dR+
∫

Rn
t

δvS · tF dR (27)
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• Weighted residual method on the space-time domain

• Lagrange multiplier technique for coupling conditions
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Appearance of Non-smooth Fluid Solutions
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• flow-immersed thin structures cause discontinuous flow solutions ! 

Navier-Stokes fluid (v-p) & 
slip interface conditions

Navier-Stokes fluid (v-p) & 
tip singularity

Navier-Stokes fluid (v-p) & 
shear layer at interface

• strongly discontinuous pressure 

• weakly discontinuous velocity
no-slip interface
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Approximation of Non-smooth Solutions
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• Explicit Methods

2 A. KÖLKE AND A. LEGAY

Thin structures situated in a surrounding fluid flow or encapsulating a fluid may influence drastically
the pattern of the flow and the characteristics of the physical quantities describing the fluid. The flow
field may diversify depending on the presence and characteristics of boundary conditions, shear layers
or vortex shedding effects. Embedding such a Lagrangian structure of small thickness into an Eulerian
fluid field results in discontinuous state variables of the flow. For the used velocity-pressure formulation
of the Navier-Stokes equations and no-slip interfacial conditions this produces a strongly discontinuous
pressure solution and a weakly (gradient) discontinuous velocity solution along the moving fluid-
structure interface. In case of interfacial slip conditions the tangential component of the velocity may
exhibit a strong discontinuity. Especially for engineering tasks in fluid-structure interaction it seems
to be reasonable to apply simplified models as a first approximation to complex physical processes.
Instead of the time-consuming resolution of all necessary length and time scales of the full model
within a numerical simulation it can be beneficial to accept non-smooth solution characteristics, e.g.
discontinuities, and to take them into account explicitly by an advanced numerical strategy.

The Arbitrary Lagrange-Euler method (ALE) [1, 2, 3, 4, 5] is classically applied to treat flow
immersed objects by using the advantages of an Eulerian description of the fluid domain and a
Lagrangian description of the solid domain. Combined with a finite element discretization of both
domains, a conservative coupling can be achieved by the compatibility of the two meshes (geometry)
and approximation (physics) at the common fluid-structure interface. This condition may introduce
severe complications, e.g. fluid mesh distortions (see Figure 1), if mesh-moving strategies are applied.
Moreover, an ALE-based approach tends to be limited when multiple immersed structures are subjected
to rotation or large relative displacements.

Figure 1. Distorted ALE meshes due to structural motion.

In order to avoid these restrictions and to consider physical effects at complex interfaces, several
numerical methodologies have been developed. A moving and evolving interface of arbitrary shape can
be represented by an implicit method using a fixed background grid. It has the advantage of avoiding
the need for mesh-moving or re-meshing procedures. Figure 2 shows explicit and implicit methods
of incorporating a thin structure into the fluid domain. Implicit descriptions are used in the immersed
boundary method (IBM) by Peskin [6, 7, 8] for investigation of fibers in viscous flow, in the fictitious
domain method (FDM) developed by Glowinski et al. [9, 10, 11, 12] for moving rigid bodies in a fluid
and in the immersed finite element method (IFEM) introduced by Zhang et al. [13, 14, 15] for the
simulation of elastic solids in fluids. Within these methods, the conservative and computational stable
coupling of solid and fluid can be realized by higher order schemes, increasing the numerical effort.

The computational approach to fluid-structure interaction proposed by the paper at hand focuses on
flow-immersed moving thin flexible structures and is based on an implicit interface description. The
numerical scheme employs the extended finite element method (XFEM) presented by Belytschko et al.
[16] as well as a space-time discretization.

The XFEM combines a level set representation of interfaces [17] and the partition of unity method

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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• Implicit Methods

• fixed connectivity
• mesh moving / remeshing

• changing connectivity
• update of indicator function
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Evolving Non-smooth Solutions
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• The stated problem involves discontinuities at moving interfaces

12 A. KÖLKE AND A. LEGAY

To prevent shear locking, constant(space)/linear(time) functions are used for the condensed shear force
and the bending moment within the element of the mixed-hybrid formulation.

4. ENRICHED SPACE-TIME FINITE ELEMENT APPROXIMATION OF THE FLOW

4.1. Localization of moving thin structures in the space-time domain by level sets

Taking advantage of an a priori knowledge on the behavior or characteristics of the solution to the
problem under consideration facilitates the proper enrichment of a space-time approximation with
finite elements. If the special solution is of local character, implicit methods of describing interfaces
and boundaries, e.g. one or multiple level set functions [54], can be applied to localize the necessary
enrichment. For evolving local characteristics the level set method introduced by Osher and Sethian
has been shown to be an eligible approach for various physical problems [55, 56].

Rt

x1

t
x2

Rtx1

t
x2

Figure 7. Evolving non-smooth solutions in the space-time domain.

Figure 7 exemplary shows a line of discontinuity within the space-time domain and its representation
by the zero level set of a space-time defined level set function φ(x, t). For the application of a
fluid-immersed thin solid the fluid-structure interface is identical to the space-time curve of evolving
discontinuous Eulerian flow field.

4.2. Local enrichment of the approximation in the fluid domain

The space-time formulation of the model equations for fluid and structure allows to track strongly
and weakly discontinuous solutions at evolving interfaces (represented by the zero level set) by using
the partition of unity concept. Applying the extended finite element method (XFEM) [16] and their
adaption to space-time finite elements [26, 27, 57] the velocity approximation of the fluid domain is
locally enriched by an enrichment function ψ(x, t) that realizes a jump-type-enrichment

vF(x, t) = ∑
k∈N

NF
k (x, t) vk + ∑

j∈M

NF
j (x, t)ψ j(x, t) w j (28)

and introduces additional unknowns w j at the set of enriched nodes M . The continuity of the formally
fully decoupled velocity field at the fluid-structure interface, required by Equation (23) is ensured
in integral form by the stabilized distributed Lagrange multiplier approach, described in Section
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‣ Localization of non-smooth solution by implicit function (Level Sets)

‣ Incorporation of a priori knowledge on solution characteristics (XFEM)
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Level Set Representation of Thin Structure
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Construction of an updated space-time level set function from the 
current configuration of the thin structure using

ENRICHED SPACE-TIME FINITE ELEMENT METHOD FOR FSI 17

approximated zero level-set

discretized thin-walled structure tn tn+1

ε

Figure 11. Mapping the structural current configuration to the fluid frame.

Mapping a geometrically complex thin structure to a coarse fluid mesh with help of a level set
function may introduce an approximation error ε depending on the resolution of the fluid discretization.
For the majority of practical cases with moderate curvature of the structure fluid element sizes
necessary to resolve the dominating flow characteristics seem to be sufficient.

5.2. Connectivity update technique

The extended space-time finite element technique avoids repeated updates of the geometrical meshes
since the fluid discretization remains topologically fixed and the structure is immersed by an extension
of the physical approximation based on level sets. Therefore the computational effort is shifted from
mesh-update and remeshing cycles to the refreshing of connectivity between the degrees of freedom
of the solid velocities, the locally enriched fluid velocities/pressure and the distributed Lagrange
multipliers representing interfacial coupling tractions.

t = 0.1T t = 0.2T t = 0.3T t = 0.4T

Figure 12. Connectivity changes during calculation of moving immersed structure.

Figure 12 shows gradual changes of connectivity (including enrichment degrees of freedom) in the
overall algebraic system of equations for the piston problem discussed in Section 6.1 after utilizing
the reverse Cuthill-McKee reordering algorithm to the nodes of the geometrical mesh. During the
harmonic oscillation of the spring-supported piston with cycle period T and its crossing of several
space-time fluid elements, the degrees of freedom of structural velocity need to be reconnected to the
fluid velocities and interface tractions of the actual fluid element hosting the immersed structure. The
sparsity pattern of the coefficient matrix emphasizes the effect of distributed Lagrange multipliers to
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coupling terms in Equations (32a) and (32b). The symmetric matrix Ẑ represents the stabilization term
(32c) of the distributed Lagrange multiplier approach introduced in Section 4.3. Sub-matrices from
the Galerkin/least squares stabilization used for the convection dominated incompressible fluid are not
explicitly shown in (35), but considered in the computational scheme.

The overall solution strategy for N time slabs Qn of the coupled nonlinear fluid-structure problem is
shown in Algorithm 1.

Data: finite element mesh of fluid and thin-walled structure, material properties
Input: initial conditions ṽ, boundary conditions v̄ and t̄ for fluid and structure
for n < N do solve time slab Qn:

if n = 0 then vn−1 = ṽ; use initial conditions
else v̂n−1 = v̂n−1,m; use converged last time slab solution
repeat perform Picard iteration step m for nonlinearities:

if m = 0 then v̂n,m−1 = v̂n−1,m; use converged last time slab solution
(1) calculate actual structural displacements d̂n,m with Eq. (19) → LS

t ;
(2) map LS

t to QF
t by constructing φ n,m with help of Eq. (36) in Sec. 5.1;

(3) assign immersed structural elements to hosting fluid elements (see Section 5.2);
(4) determine the need for space-time fluid enrichment element-by-element;
(5) initialize system with additional degrees of freedom from enrichment;
(6) numerical integration of the weak form (see Section 5.3);
(7) apply boundary conditions v̄ and t̄;
(8) solve m-th linearized system of equations, Eq. (34) → v̂n,m, p̂n,m, ẑn,m ;

until convergence of physical solution and level set function;
end

Algorithm 1: Computational scheme of the EST method.

5. ALGORITHMIC DETAILS

5.1. Construction of the structure’s level set function

The thin structure is embedded into the flow field by using a level set function as in [24]. According to
the current configuration of the structure the level set function φ is derived following

φ(x, t) =±min
x∈Σ

(‖x(t)−xΣ(t)‖2) (36)

where the scalar value φ determines the smallest signed euclidean distance from a fluid point to the
thin structure (line-shaped interface for two-dimensional problems) [66].

Fig. 11 shows a sketch of the fluid discretization and an embedded thin structure. The current position
of the structure is approximated by the level set function φ and therefore mapped onto the Eulerian fluid
domain. As a result of evaluating (36), at each node of the mesh the scalar value of the level set function
is known and represents the relative position to the Lagrangian structure, located at φ = 0.

The space-time level set function φ(x, t) is interpolated using bi-linear space-time shape functions
NF

k within the prismatic fluid element. It is updated after each nonlinear iteration m step and time slab
n, so that the current position of the Lagrangian structure related to the Eulerian fluid is known at all
times.
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Space-Time Finite Element Approach

11Colloque GDR-IFS, 14-15 mai 2007, Cnam Paris

• Uniform discretization in space and time using finite elements

‣ Straightforward applicability of XFEM technology for evolving 

   non-smooth solution in the space-time domain

‣ Enriched space-time finite elements enable the 

   capturing of non-smooth solutions propagating through the domain

8 A. KÖLKE AND A. LEGAY

and therefore ensure geometrical conservation. The vector vS contains the velocities (vS
1,v

S
2) of the thin

structure in the global system, obtained by a transformation of the local velocity values (vX ,vY ). Fluid
and solid interfacial tractions have to be of the same magnitude and opposite direction

tF +
dΣ0

dΣt
tS = 0 on Rt (24)

in order to fulfill momentum balance at the interface. The referential solid traction tS is projected
to the current frame. The coupling conditions in Eqs. (23) and (24) represent no-slip conditions at the
interface. Slip interface conditions or frictional effects at the interface can be considered by formulating
the interfacial balance equations in normal and tangential direction.

3. WEAK FORM AND SPACE-TIME FINITE ELEMENT DISCRETIZATION
The following section applies the weighted residual method to the strong form governing equations
for the introduced fluid and structure model (Sections 2.2 and 2.3) as well as the coupling conditions
(Section 2.4). The resulting weak form of the whole coupled system and the space-time domain are then
discretized using the space-time finite element method [50, 51, 52] and a time-discontinuous Galerkin
method for integration in time.

x1

t
x2

Q

ta

tb

x1

t
x2

Qn

tn
tn+1

Figure 5. Discretization of the continuous space-time domain using space-time finite elements.

The basic idea of a space-time discretization is to include the temporal axis in the finite element
discretization. For numerical efficiency the space-time domain Q is divided into a sequence of N time
slabs Qn = Ωn× [tn, tn+1], as shown in Figure 5, which are solved successively.

At time instant tn the energy of the discretized system at the end of the previous time slab t−n has to be
equal to the energy at the beginning of the next time step t+n . For time-discontinuous approximations of
field unknowns this leads to additional jump terms in the weak form. Moreover, spatial discretizations
from t−n and t+n do not need to be conforming. For first order ordinary differential equations the resulting
time integration scheme is A-stable and third-order accurate for linear temporal interpolation.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls

11



Extrinsic Enrichment of Space-Time FEM

12Colloque GDR-IFS, 14-15 mai 2007, Cnam Paris

• Combination of level sets, local PUM and space-time finite elements

• Enrichment function (jump-type)

ENRICHED SPACE-TIME FINITE ELEMENT METHOD FOR FSI 13
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Figure 8. Enriched space-time ansatz functions: example of zero level set and enrichment functions.

4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange multipliers
for continuity avoids here the introduction of blending elements [58]. As the velocity field, the
approximation of the fluid pressure is locally extended by the enrichment function ψ , enabling strong
discontinuities,

pF(x, t) = ∑
k∈N

NF
k (x, t) pk + ∑

j∈M

NF
j (x, t)ψ j(x, t) q j (29)

and introducing additional unknowns q j at the set of enriched nodes M . The enrichment function
ψ incorporates the placement of the enrichment within the space-time finite element by the level set
function φ(x, t)

ψ j(x, t) =
1
2

(
1− sign φ(x, t) · sign φ(x j, t j)

)
(30)

where (x j, t j) are the coordinates of node j in the space-time domain. This enrichment function ensures
the Kronecker-δ property of the approximation.

Fig. 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the prismatic
space-time finite element. Here, the nodal values φ̂ = (−0.3,0.4,0.8,−0.5,0.2,0.6) of the interpolated
level set function by its iso-contour describe the location of both: the fluid-structure interface and the
discontinuous flow solution within the element. Here two different types of nodal enrichment functions
ψ j can be obtained from Eq. (30). A representation of the used bi-linear space-time ansatz functions
is shown in the upper row of Fig. 9. The intensity of color identifies the specific value of the ansatz
function and ranges between zero and unity. The bi-linear basis is applied for constructing additional
discontinuous shape functions with help of the nodal enrichment function ψ . The six additional
enriching shape functions are shown in the bottom row.

4.3. Distributed perturbed Lagrange multiplier technique

[!!!] Since the fluid-structure interface Rt is moving and deforming the discrete and edge-based
approximation of interface tractions in an explicit manner is not easy to realize. [59, 60, 61, 62, 63]
Therefore an alternative implicit and level-set oriented technique has been developed. [!!!]

The space-time-defined interface traction tF(x, t) in Eq. (27) is represented with help of a higher-
dimensional function zF(x, t) and localized by the zero level set φ(x, t) = 0, so that

tF = zF δD(φ) (31)

where δD is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the vicinity
Qn,e

t of the interface Rt , only at nodes whose support is cut by the interface. This results in the implicit
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4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange multipliers
for continuity avoids here the introduction of blending elements [58]. As the velocity field, the
approximation of the fluid pressure is locally extended by the enrichment function ψ , enabling strong
discontinuities,

pF(x, t) = ∑
k∈N

NF
k (x, t) pk + ∑

j∈M

NF
j (x, t)ψ j(x, t) q j (29)

and introducing additional unknowns q j at the set of enriched nodes M . The enrichment function
ψ incorporates the placement of the enrichment within the space-time finite element by the level set
function φ(x, t)

ψ j(x, t) =
1
2

(
1− sign φ(x, t) · sign φ(x j, t j)

)
(30)

where (x j, t j) are the coordinates of node j in the space-time domain. This enrichment function ensures
the Kronecker-δ property of the approximation.

Fig. 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the prismatic
space-time finite element. Here, the nodal values φ̂ = (−0.3,0.4,0.8,−0.5,0.2,0.6) of the interpolated
level set function by its iso-contour describe the location of both: the fluid-structure interface and the
discontinuous flow solution within the element. Here two different types of nodal enrichment functions
ψ j can be obtained from Eq. (30). A representation of the used bi-linear space-time ansatz functions
is shown in the upper row of Fig. 9. The intensity of color identifies the specific value of the ansatz
function and ranges between zero and unity. The bi-linear basis is applied for constructing additional
discontinuous shape functions with help of the nodal enrichment function ψ . The six additional
enriching shape functions are shown in the bottom row.

4.3. Distributed perturbed Lagrange multiplier technique

[!!!] Since the fluid-structure interface Rt is moving and deforming the discrete and edge-based
approximation of interface tractions in an explicit manner is not easy to realize. [59, 60, 61, 62, 63]
Therefore an alternative implicit and level-set oriented technique has been developed. [!!!]

The space-time-defined interface traction tF(x, t) in Eq. (27) is represented with help of a higher-
dimensional function zF(x, t) and localized by the zero level set φ(x, t) = 0, so that

tF = zF δD(φ) (31)

where δD is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the vicinity
Qn,e

t of the interface Rt , only at nodes whose support is cut by the interface. This results in the implicit
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4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange multipliers
for continuity avoids here the introduction of blending elements [58]. As the velocity field, the
approximation of the fluid pressure is locally extended by the enrichment function ψ , enabling strong
discontinuities,

pF(x, t) = ∑
k∈N

NF
k (x, t) pk + ∑

j∈M

NF
j (x, t)ψ j(x, t) q j (29)

and introducing additional unknowns q j at the set of enriched nodes M . The enrichment function
ψ incorporates the placement of the enrichment within the space-time finite element by the level set
function φ(x, t)

ψ j(x, t) =
1
2

(
1− sign φ(x, t) · sign φ(x j, t j)

)
(30)

where (x j, t j) are the coordinates of node j in the space-time domain. This enrichment function ensures
the Kronecker-δ property of the approximation.

Fig. 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the prismatic
space-time finite element. Here, the nodal values φ̂ = (−0.3,0.4,0.8,−0.5,0.2,0.6) of the interpolated
level set function by its iso-contour describe the location of both: the fluid-structure interface and the
discontinuous flow solution within the element. Here two different types of nodal enrichment functions
ψ j can be obtained from Eq. (30). A representation of the used bi-linear space-time ansatz functions
is shown in the upper row of Fig. 9. The intensity of color identifies the specific value of the ansatz
function and ranges between zero and unity. The bi-linear basis is applied for constructing additional
discontinuous shape functions with help of the nodal enrichment function ψ . The six additional
enriching shape functions are shown in the bottom row.

4.3. Distributed perturbed Lagrange multiplier technique

[!!!] Since the fluid-structure interface Rt is moving and deforming the discrete and edge-based
approximation of interface tractions in an explicit manner is not easy to realize. [59, 60, 61, 62, 63]
Therefore an alternative implicit and level-set oriented technique has been developed. [!!!]

The space-time-defined interface traction tF(x, t) in Eq. (27) is represented with help of a higher-
dimensional function zF(x, t) and localized by the zero level set φ(x, t) = 0, so that

tF = zF δD(φ) (31)

where δD is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the vicinity
Qn,e

t of the interface Rt , only at nodes whose support is cut by the interface. This results in the implicit
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Figure 9. Enriched space-time ansatz functions: bi-linear basis (top), bi-linear enriched (bottom).

formulation of the interfacial fluid tractions tF, enabling the method to handle constrained motion of
fluid-immersed objects in a computationally elegant way.

Since the thin immersed structure is coupled to the surrounding fluid domain on its upper (+) and
lower (−) face, the coupling conditions need to be ensured at R+

t and R−t . The integral form of the fluid-
structure coupling conditions (27) is now reformulated by using the distributed Lagrange multiplier z+

and z− to replace the interfacial tractions tF,

+
∫

Rn,+
t

δzF+ · (vF+−vS)dR−
∫

Rn,+
t

δvF+ · zF+ dR+
∫

Rn,+
t

δvS · zF+ dR (32a)

+
∫

Rn,−
t

δzF− · (vF−−vS)dR−
∫

Rn,−
t

δvF− · zF− dR+
∫

Rn,−
t

δvS · zF− dR (32b)

+ ∑
e∈Z

∫

Qn,e
t

δzF+ · τzzF+ + ∑
e∈Z

∫

Qn,e
t

δzF− · τzzF−, (32c)

where line 32c introduces an additional stabilizing term to the Lagarange multiplier formulation,
equivalent to the perturbed Lagrange multiplier technique [64, 65]. This stabilization is needed
since the distributed Lagrange multiplier field z is defined to be equal to the interface tractions,
but is undefined elsewhere in the domain. Uniqueness in the solution is obtained by evaluating the
perturbation within space-time finite elements Qn,e

t of the set Z of elements cut by the fluid-structure
interface. The perturbation parameter τz is determined sufficiently small by using a heuristic based on
element size and properties of the fluid.

Fig. 10 emphasizes the application of the distributed Lagrange multiplier approach. Numerical
integration of the terms in Eq. 32 is performed over the domain of the space-time element and the
space-time interface, captured by a zero level set. The issue of a specialized numerical quadrature
technique is adressed in Section 5.3. For instance, nodal values ẑ for the bi-linear space-time shape
functions (see upper row in Fig. 9) approximating the field of the distributed Lagrange multiplier z
within the element are chosen. With help of the distributed Lagrange multiplier field z(x, t), defined
within the whole space-time finite element, the value of the local Lagrange multiplier on the interface

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls

12



Enriched Flow Approximation

13Colloque GDR-IFS, 14-15 mai 2007, Cnam Paris

‣ Enriched fluid velocity approximation

‣ Enriched Fluid pressure approximation

✓ Strong and weak discontinuous flow solutions at immersed structure

➡ Enriched approximation decouples flow state at interface completely!

➡ Impose coupling conditions at fluid-structure interface!

12 A. KÖLKE AND A. LEGAY

To prevent shear locking, constant(space)/linear(time) functions are used for the condensed shear force
and the bending moment within the element of the mixed-hybrid formulation.

4. ENRICHED SPACE-TIME FINITE ELEMENT APPROXIMATION OF THE FLOW

4.1. Localization of moving thin structures in the space-time domain by level sets

Taking advantage of an a priori knowledge on the behavior or characteristics of the solution to the
problem under consideration facilitates the proper enrichment of a space-time approximation with
finite elements. If the special solution is of local character, implicit methods of describing interfaces
and boundaries, e.g. one or multiple level set functions [54], can be applied to localize the necessary
enrichment. For evolving local characteristics the level set method introduced by Osher and Sethian
has been shown to be an eligible approach for various physical problems [55, 56].

Rt

x1

t
x2

Rtx1

t
x2

Figure 7. Evolving non-smooth solutions in the space-time domain.

Figure 7 exemplary shows a line of discontinuity within the space-time domain and its representation
by the zero level set of a space-time defined level set function φ(x, t). For the application of a
fluid-immersed thin solid the fluid-structure interface is identical to the space-time curve of evolving
discontinuous Eulerian flow field.

4.2. Local enrichment of the approximation in the fluid domain

The space-time formulation of the model equations for fluid and structure allows to track strongly
and weakly discontinuous solutions at evolving interfaces (represented by the zero level set) by using
the partition of unity concept. Applying the extended finite element method (XFEM) [16] and their
adaption to space-time finite elements [26, 27, 57] the velocity approximation of the fluid domain is
locally enriched by an enrichment function ψ(x, t) that realizes a jump-type-enrichment

vF(x, t) = ∑
k∈N

NF
k (x, t) vk + ∑

j∈M

NF
j (x, t)ψ j(x, t) w j (28)

and introduces additional unknowns w j at the set of enriched nodes M . The continuity of the formally
fully decoupled velocity field at the fluid-structure interface, required by Equation (23) is ensured
in integral form by the stabilized distributed Lagrange multiplier approach, described in Section
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Figure 8. Enriched space-time ansatz functions: example of zero level set and enrichment functions.

4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange multipliers
for continuity avoids here the introduction of blending elements [58]. As the velocity field, the
approximation of the fluid pressure is locally extended by the enrichment function ψ , enabling strong
discontinuities,

pF(x, t) = ∑
k∈N

NF
k (x, t) pk + ∑

j∈M

NF
j (x, t)ψ j(x, t) q j (29)

and introducing additional unknowns q j at the set of enriched nodes M . The enrichment function
ψ incorporates the placement of the enrichment within the space-time finite element by the level set
function φ(x, t)

ψ j(x, t) =
1
2

(
1− sign φ(x, t) · sign φ(x j, t j)

)
(30)

where (x j, t j) are the coordinates of node j in the space-time domain. This enrichment function ensures
the Kronecker-δ property of the approximation.

Fig. 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the prismatic
space-time finite element. Here, the nodal values φ̂ = (−0.3,0.4,0.8,−0.5,0.2,0.6) of the interpolated
level set function by its iso-contour describe the location of both: the fluid-structure interface and the
discontinuous flow solution within the element. Here two different types of nodal enrichment functions
ψ j can be obtained from Eq. (30). A representation of the used bi-linear space-time ansatz functions
is shown in the upper row of Fig. 9. The intensity of color identifies the specific value of the ansatz
function and ranges between zero and unity. The bi-linear basis is applied for constructing additional
discontinuous shape functions with help of the nodal enrichment function ψ . The six additional
enriching shape functions are shown in the bottom row.

4.3. Distributed perturbed Lagrange multiplier technique

[!!!] Since the fluid-structure interface Rt is moving and deforming the discrete and edge-based
approximation of interface tractions in an explicit manner is not easy to realize. [59, 60, 61, 62, 63]
Therefore an alternative implicit and level-set oriented technique has been developed. [!!!]

The space-time-defined interface traction tF(x, t) in Eq. (27) is represented with help of a higher-
dimensional function zF(x, t) and localized by the zero level set φ(x, t) = 0, so that

tF = zF δD(φ) (31)

where δD is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the vicinity
Qn,e

t of the interface Rt , only at nodes whose support is cut by the interface. This results in the implicit
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• impose constraints at interface not explicitly discretized (meshed)

• constrained functions are touched by local enrichments (XFEM)

• varying number of involved degrees of freedom (current interface shape)

• Penalty methods?

• Lagrangian multiplier?

• Nitsche‘s method?

• etc.?
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• implicit formulation of the Lagrange multiplier

• for constraints at evolving interfaces in combination with Space-Time-FEM

• transformed weak coupling conditions (with perturbation)
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Figure 8. Enriched space-time ansatz functions: example of zero level set and enrichment functions.

4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange multipliers
for continuity avoids here the introduction of blending elements [58]. As the velocity field, the
approximation of the fluid pressure is locally extended by the enrichment function ψ , enabling strong
discontinuities,

pF(x, t) = ∑
k∈N

NF
k (x, t) pk + ∑

j∈M

NF
j (x, t)ψ j(x, t) q j (29)

and introducing additional unknowns q j at the set of enriched nodes M . The enrichment function
ψ incorporates the placement of the enrichment within the space-time finite element by the level set
function φ(x, t)

ψ j(x, t) =
1
2

(
1− sign φ(x, t) · sign φ(x j, t j)

)
(30)

where (x j, t j) are the coordinates of node j in the space-time domain. This enrichment function ensures
the Kronecker-δ property of the approximation.

Fig. 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the prismatic
space-time finite element. Here, the nodal values φ̂ = (−0.3,0.4,0.8,−0.5,0.2,0.6) of the interpolated
level set function by its iso-contour describe the location of both: the fluid-structure interface and the
discontinuous flow solution within the element. Here two different types of nodal enrichment functions
ψ j can be obtained from Eq. (30). A representation of the used bi-linear space-time ansatz functions
is shown in the upper row of Fig. 9. The intensity of color identifies the specific value of the ansatz
function and ranges between zero and unity. The bi-linear basis is applied for constructing additional
discontinuous shape functions with help of the nodal enrichment function ψ . The six additional
enriching shape functions are shown in the bottom row.

4.3. Distributed perturbed Lagrange multiplier technique

[!!!] Since the fluid-structure interface Rt is moving and deforming the discrete and edge-based
approximation of interface tractions in an explicit manner is not easy to realize. [59, 60, 61, 62, 63]
Therefore an alternative implicit and level-set oriented technique has been developed. [!!!]

The space-time-defined interface traction tF(x, t) in Eq. (27) is represented with help of a higher-
dimensional function zF(x, t) and localized by the zero level set φ(x, t) = 0, so that

tF = zF δD(φ) (31)

where δD is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the vicinity
Qn,e

t of the interface Rt , only at nodes whose support is cut by the interface. This results in the implicit
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Figure 9. Enriched space-time ansatz functions: bi-linear basis (top), bi-linear enriched (bottom).

formulation of the interfacial fluid tractions tF, enabling the method to handle constrained motion of
fluid-immersed objects in a computationally elegant way.

Since the thin immersed structure is coupled to the surrounding fluid domain on its upper (+) and
lower (−) face, the coupling conditions need to be ensured at R+

t and R−t . The integral form of the fluid-
structure coupling conditions (27) is now reformulated by using the distributed Lagrange multiplier z+

and z− to replace the interfacial tractions tF,

+
∫

Rn,+
t

δzF+ · (vF+−vS)dR−
∫

Rn,+
t

δvF+ · zF+ dR+
∫

Rn,+
t

δvS · zF+ dR (32a)

+
∫

Rn,−
t

δzF− · (vF−−vS)dR−
∫

Rn,−
t

δvF− · zF− dR+
∫

Rn,−
t

δvS · zF− dR (32b)

+ ∑
e∈Z

∫

Qn,e
t

δzF+ · τzzF+ + ∑
e∈Z

∫

Qn,e
t

δzF− · τzzF−, (32c)

where line 32c introduces an additional stabilizing term to the Lagarange multiplier formulation,
equivalent to the perturbed Lagrange multiplier technique [64, 65]. This stabilization is needed
since the distributed Lagrange multiplier field z is defined to be equal to the interface tractions,
but is undefined elsewhere in the domain. Uniqueness in the solution is obtained by evaluating the
perturbation within space-time finite elements Qn,e

t of the set Z of elements cut by the fluid-structure
interface. The perturbation parameter τz is determined sufficiently small by using a heuristic based on
element size and properties of the fluid.

Fig. 10 emphasizes the application of the distributed Lagrange multiplier approach. Numerical
integration of the terms in Eq. 32 is performed over the domain of the space-time element and the
space-time interface, captured by a zero level set. The issue of a specialized numerical quadrature
technique is adressed in Section 5.3. For instance, nodal values ẑ for the bi-linear space-time shape
functions (see upper row in Fig. 9) approximating the field of the distributed Lagrange multiplier z
within the element are chosen. With help of the distributed Lagrange multiplier field z(x, t), defined
within the whole space-time finite element, the value of the local Lagrange multiplier on the interface
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Figure 10. Distributed Lagrange multiplier in prismatic element: a) domain of integration for isosurface (Rn
t ) and

enriched elements (Qn,e
t ∈Z ), b) exemplary distributed multiplier z, c) exemplary interface tractions z along Rn

t .

can be determined by interpolating z(x, t) at the position of the interface/isosurface. The resulting
exemplary distribution of interfacial traction values is shown: the interface traction may vary in space
and time on the evolving interface.

4.4. General monolithic solution strategy

The weak form of the coupled system consisting of the fluid (Section 3.1) and the thin structure (Section
3.2), combined with the space-time discretization of a specific time slab Qn, leads to the system of
nonlinear algebraic equations

Â(x̂) x̂ = b̂(x̂) (33)

with the coefficient matrix Â, the vector of unknowns x̂ and the right hand side b̂. The nonlinear
equations are linearized applying a fix point Picard iteration scheme that results in the system

Â(x̂m−1) x̂ = b̂(x̂m−1) (34)

to be solved within the m-th iteration step of the actual time slab n. The components of the linearized
equations of the coupled fluid-structure system





M̂S Ŝ 0 0
−ŜT Ẑ F̂T 0

0 −F̂ M̂F −ĤT

0 0 Ĥ 0









v̂S

ẑ
v̂F

p̂



 =





b̂S

0
b̂F

0



 (35)

are the unknown vectors v̂S, v̂F, p̂ and ẑ representing structural velocities, fluid velocities, fluid pressure
and the distributed Lagrange multipliers, respectively. These vectors of discrete field variables may
also contain additional unknowns resulting from the space-time enriched approximation introduced in
Section 4.1. External forces on solid and flow are considered by b̂S and b̂F.

In the computation of the linear structural mass matrix M̂S sectional driven inertia forces are
included, while inertia effects originating from rotational velocity of the thin solid section are
neglected. The mass matrix M̂F of the Navier-Stokes fluid is linearized in the convective term,
by using the velocity v̂m−1 within Equation (25a) for the m-th iteration step of the utilized outer
Picard iteration scheme. The matrix Ĥ corresponds to the velocity-pressure term needed for the
incompressibility constraint of the fluid. The matrices Ŝ and F̂ are the discretized fluid-structure
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6. EXAMPLES

The introduced methodology is now applied to solve systems of fluid-structure interaction involving
viscous fluid flow and thin-walled immersed structures. The immersed structural parts of a problem are
assumed to be rigid or flexible leading to a number of different test cases for each specific example.

The Piston problem is a fully coupled fluid-structure system with interaction of flow and structure.
The system is investigated for the case of prescribed piston motion and the vibration of a rigid and
flexible thin-walled piston.

6.1. Motion of a piston

The piston problem consists of a fluid-filled channel with length b and width a and a matching piston-
like object modeled by a thin structure (Figure 14). The piston is supported by a linear spring of
stiffness k and separates the fluid domain with density ρ f and viscosity µ . The thickness h of the
structure, placed at c from the left inlet and of density ρs, is very small in relation to other spatial
system dimensions. The structural displacements are measured in relation to c using u1(t).

At the boundary of the channel Dirichlet and Neumann conditions are defined. The vertical velocity
v̄2 at the walls of the channel is zero. At the left inlet the horizontal tractions t̄L

1 and at the outlet t̄R
1 = 0

are prescribed. The system is initially at rest, so that for fluid and structure v = 0 and u = 0 holds.

b

a

c u1

x1

k

k

t̄L
1 t̄R

1

v̄2 = 0

v̄2 = 0

fluid fluid

A

B

Figure 14. Piston system: channel flow with immersed structure.

The physical behavior of the described system is investigated considering the setups R and F of a
rigid and flexible piston structure. The geometrical dimensions of the system are given by a = 1cm,
b = 8cm, c = 2cm and h = 0.02cm, while structural flexibility is chosen according to Table I, providing
material parameters for fluid and structure. The ratio ξ = m f /ms of total fluid mass m f = ρ f ab to total
structural mass ms = ρsah is ξ = 103 and characterizes the piston problem as a fluid-structure system
involving a light-weight structural part.

The analytical solution to the time-dependent pressure field p(x1, t) within the channel is

p(x1, t) =

{
t̄L
1 −ρ f vA

1,t(t)x1 x1 < XA(t)
t̄R
1 +ρ f vA

1,t(t)(b− x1) x1 > XA(t)
(37)
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6. EXAMPLES

The introduced methodology is now applied to solve systems of fluid-structure interaction involving
viscous fluid flow and thin-walled immersed structures. The immersed structural parts of a problem are
assumed to be rigid or flexible leading to a number of different test cases for each specific example.

The Piston problem is a fully coupled fluid-structure system with interaction of flow and structure.
The system is investigated for the case of prescribed piston motion and the vibration of a rigid and
flexible thin-walled piston.

6.1. Motion of a piston

The piston problem consists of a fluid-filled channel with length b and width a and a matching piston-
like object modeled by a thin structure (Figure 14). The piston is supported by a linear spring of
stiffness k and separates the fluid domain with density ρ f and viscosity µ . The thickness h of the
structure, placed at c from the left inlet and of density ρs, is very small in relation to other spatial
system dimensions. The structural displacements are measured in relation to c using u1(t).

At the boundary of the channel Dirichlet and Neumann conditions are defined. The vertical velocity
v̄2 at the walls of the channel is zero. At the left inlet the horizontal tractions t̄L

1 and at the outlet t̄R
1 = 0

are prescribed. The system is initially at rest, so that for fluid and structure v = 0 and u = 0 holds.
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Figure 14. Piston system: channel flow with immersed structure.

The physical behavior of the described system is investigated considering the setups R and F of a
rigid and flexible piston structure. The geometrical dimensions of the system are given by a = 1cm,
b = 8cm, c = 2cm and h = 0.02cm, while structural flexibility is chosen according to Table I, providing
material parameters for fluid and structure. The ratio ξ = m f /ms of total fluid mass m f = ρ f ab to total
structural mass ms = ρsah is ξ = 103 and characterizes the piston problem as a fluid-structure system
involving a light-weight structural part.

The analytical solution to the time-dependent pressure field p(x1, t) within the channel is

p(x1, t) =

{
t̄L
1 −ρ f vA

1,t(t)x1 x1 < XA(t)
t̄R
1 +ρ f vA

1,t(t)(b− x1) x1 > XA(t)
(37)
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Figure 15. Piston with prescribed motion: Discontinuous pressure solution.
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Figure 16. Piston with prescribed motion: Pressure obtained by a) the EST method and b) a moving mesh approach.

6.1.2. Vibration of rigid piston structure For the situation of a spring-supported, undamped rigid
piston immersed in a fluid channel with tractions t̄L

1 = 2.0g/cm/s2 and t̄R
1 = 0.0g/cm/s2 the natural

frequency ω0 and amplitude a0 of the harmonic vibration are given by

ω0 =

√
2k

m f +ms
and a0 =

a(t̄L
1 − tR

1 )
2k

(41)

while the horizontal piston displacement, velocity and acceleration reads

uA
1 (t) = a0(1− cos ω0t) (42)

vA
1 (t) = a0ω0 sin ω0t (43)

vA
1,t(t) = a0ω2

0 cos ω0t. (44)
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6.1.2. Vibration of rigid piston structure For the situation of a spring-supported, undamped rigid
piston immersed in a fluid channel with tractions t̄L

1 = 2.0g/cm/s2 and t̄R
1 = 0.0g/cm/s2 the natural

frequency ω0 and amplitude a0 of the harmonic vibration are given by

ω0 =

√
2k

m f +ms
and a0 =

a(t̄L
1 − tR

1 )
2k

(41)

while the horizontal piston displacement, velocity and acceleration reads

uA
1 (t) = a0(1− cos ω0t) (42)

vA
1 (t) = a0ω0 sin ω0t (43)

vA
1,t(t) = a0ω2

0 cos ω0t. (44)
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The piston undergoes accelerated motion due to the nonzero fluid traction state t̄L at the left inlet of
the channel that results in a hydrostatic pressure field along the main channel axis. With increasing
deflection of the piston from its initial position at c, the spring forces pull the piston back and lead to
an oscillation of the piston. Due to the absence of dampers and fluid shear stresses the oscillation of
the piston is undamped.

The channel domain is discretized uniformly by 8 x 64 enriched prismatic space-time fluid elements.
The rigid piston is described by 4 space-time elements for a thin-walled structure. The constant time
step size ∆t = 0.1s in I = [0s...20s] is sufficient smaller to resolve the harmonic oscillation of the
piston motion (Eq. 42).
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Figure 17. Vibration of rigid piston: discontinuous pressure solutions during one period TR.

Fig. 17 shows the numerical solution to the displacement and velocity of the piston in point A and
the pressure field along the main axis of the channel using the EST approach. The behavior of the fully
coupled system is well simulated by the EST approach: the spatial discontinuous pressure solution is
found exactly. An approximation error is introduced by the time integration scheme since the used
linear velocity within a time slab is not able to capture the analytic solution exactly.

The results of the EST method and the mesh-moving approach are compared in Fig. 18. As for
the prescribed motion of the rigid piston structure the flow mesh used in the moving mesh technique
deforms considerably but remains valid during the calculation. Mesh deformation due to piston motion
introduces here to coarse and fine resolved regions within the flow domain. While this may be sufficient
for approximation of very smooth functions, local coarsening as a result of mesh deformation can lead
to a significant reduction of accuracy. The EST method based on a fixed fluid mesh circumvents these
difficulties. The fluid enrichment resolves the strong pressure discontinuity within the flow field. The
solution of the smooth pressure states within the fluid sub-regions coincides with the mesh-moving
solution.

6.1.3. Forced vibration of flexible piston structure The previous example is modified using a flexible
piston structure (setup F) and therefore extended to a spatially two-dimensional problem. The light-
weight thin piston, subject to the same fluid loading, with small geometrical stiffness (h = 0.02cm)
and assumed linear elastic material behavior shows large structural deformations that are accompanied
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Figure 18. Vibration of rigid piston: pressure states during one period obtained by a) the EST method and b) a
moving mesh approach.

by the oscillatory motion already observed for the setup with a rigid piston. The nonlinear model
for kinematics of thin-walled structures results in an arc-shape deformed piston and nonzero structural
velocities in the vertical direction. Consequently, the fluid velocity is not constant in horizontal nor zero
in vertical direction as in the previous example. For more viscous fluids (than that considered here by
setup F) this leads to a pressure state of two-dimensional character within the flow domain including
a strong discontinuity at the immersed structure. The behavior of the coupled system consisting of
Navier-Stokes fluid and an embedded deformable structure is not predictable through a closed solution.

The discretization of the situation is realized by 8 x 64 fluid elements and 8 structural elements. Due
to the deforming structural part the time step of ∆t = 0.001s is chosen constant throughout the time
interval I = [0s...20s].

Numerical solutions to horizontal displacement and velocity of points A and B on the piston are
shown in Fig. 19. Since total mass distribution is not modified and damping effects from the viscous
fluid are negligible, the frequency of oscillation is almost unchanged. If the piston reaches its initial
configuration during a cycle, inertia forces of the distributed-mass piston lead to secondary oscillations
of the thin-walled structure, see velocity plot for point A and B in Fig. 19. Both approaches, EST
method and mesh-moving technique, give similar results to nodal velocity and displacement.

Fig. 20 underlines the limitations of the moved mesh technquies for fluid-structure problems with
considerable large deformations and rigid body motions. The mesh distortions in the middle of a
piston oscillation with maximal displacements come close to a situations involving invalid element
geometries. In such a pathological case the mesh-moving technique in the coupled solution procedure
fails and requires advanced methods, e.g. local re-meshing of the fluid grid. The EST method avoids
these restrictions.

6.2. Flexible rotating structure

The presented EST method is able to describe coupled systems involving rotating structural parts.
The following example considers two different thin-walled structures embedded in a flow channel of
dimensions a = 0.2cm and b = 2.0cm as shown in Fig. 21. In horizontal direction each structure is
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Figure 19. Vibration of flexible piston: Comparison of EST / Moving mesh solution to piston displacement and
velocity in point A and B.
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Figure 20. Vibration of flexible piston: Pressure states during one period obtained by a) the EST method and b) a
moving mesh approach.

supported by a linear spring of stiffness k, and is coupled to the channel flow. The enclosed domain
inside the solid is filled with fluid (ρ = ρ f /2 and µ = µ f /2). Both structures are free to rotate around
the hinge (initially positioned with c = 0.2cm and d = 0.05cm) and are fixed in the vertical direction.
At the left boundary of the channel the horizontal velocity v̄L

1 = 0.5cm/s is imposed while on the right
the fluid boundary tractions t̄R

1 are zero (pR = 0).
The curved shapes A and B are generated using the superformula by Gielis [67],

1
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(∣∣∣

1
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cos(
γ
4

θ)
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λ2

+
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1
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sin(
γ
4
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) 1
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, (45)

where r and θ are polar coordinates, α and β are non-zero real numbers and γ , λ1, λ2 and λ3 are
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Figure 19. Vibration of flexible piston: Comparison of EST / Moving mesh solution to piston displacement and
velocity in point A and B.
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Figure 20. Vibration of flexible piston: Pressure states during one period obtained by a) the EST method and b) a
moving mesh approach.

supported by a linear spring of stiffness k, and is coupled to the channel flow. The enclosed domain
inside the solid is filled with fluid (ρ = ρ f /2 and µ = µ f /2). Both structures are free to rotate around
the hinge (initially positioned with c = 0.2cm and d = 0.05cm) and are fixed in the vertical direction.
At the left boundary of the channel the horizontal velocity v̄L

1 = 0.5cm/s is imposed while on the right
the fluid boundary tractions t̄R

1 are zero (pR = 0).
The curved shapes A and B are generated using the superformula by Gielis [67],
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Figure 21. Rotor system: channel flow with immersed flexible and rotating structure (shapes A and B).

real numbers. Table II lists specific values belonging to the shapes A, B and C of the thin-walled
structure as well as material parameters of fluid and structural part. The maximum radius of the shapes
is normalized to rmax = 0.0475. The origin of each shape is identical to the hinge point that is connected
to the thin-walled structure by stiffeners as shown in Fig. 21.

ρ f µ ρs E G k

[ g
cm3 ] [ g

cms ] [ g
cm3 ] [ g

cms2 ] [ g
cms2 ] [ g

s2 ]

10−2 10−2 10 104 5.0 · 103 2.0

shape α β γ λ1 λ2 λ3 nP

A 1.0 1.0 3.0 0.1 1.8 1.8 120
B 1.0 1.0 4.0 0.8 4.0 4.0 120

Table II. Material and shape parameters for flexible rotating structure.

The narrow flow domain around the immersed shapes is regularly discretized by prismatic space-
time finite elements with equidistant nodes (∆h = 0.004cm). See Fig. 22 for the used mesh. Each shape
is composed of nP nodes and linear thin-walled structure elements. A structural stiffener consists of
one element and connects the hinge node to the shape.

Figure 22. Spatial discretization of flow domain and immersed rotor shapes A and B.
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