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OUTLINE

• PART 1 : X-FEM basics and continuous modeling 
of strain jumps

•PART 2 : Stability issues with stiff interfaces

•PART 3 : Applications



PART 1

X-FEM BASICS



X-FEM Philosophy

•Use of the partition of unity to insert surfaces of 
discontinuity inside finite elements (disc. in a 
field, it's derivative or matter)
•Locate (and evolve) the surfaces on the mesh 
with level sets and use this function for to build 
the enrichment
•Manage the discontinuities with the same 
generaliy as FEM (dynamics, large deformations, 
mixed formulations, contact, ...) and all types of 
behaviour. 
•Extend all the good convergence and stability 
properties of FEM



Enrichment to Model a Discontinuity in a Field

Support Rule : A node is enriched if its support is split by the 
discontinuity. 
Important : If the discontinuity is aligned with the mesh , we recover 
double-nodes : X-FEM -> FEM

(Moës, Dolbow,Belytschko 1999)



Enrichment For a Discontinuity 
in a Field Derivative

An node is enriched if its support is split by the material 
interface AND if at least one element of the support is 
split.



(Moës, Cloirec, Cartraud, 
Remacle, cmame 2004)  

Ridge enrichment function (interpolant of the absolute level 
set nodal values minus absolute value of the interpolant)

Note : This function does not 
require any blending element 
to reach optimal convergence.



Enrichment for a discontinuity in the matter

(Daux et al. ijnme 1999)

No enrichment, the integration is performed only in the 
non-void part of the elements (similar to Nitsche).

Eliminated nodes

Modified function

Classical node

Matter

Void



Moës, Béchet, Tourbier, IJNME 

Géniaut, Massin, Moes, REMN 

•The main issue with Dirichlet or more generally stiff 
interfaces is to design the correct traction space on the 
boundary. Once it is designed, any interface model may 
be handled easily.

PART 2 : 
Stiff Interfaces



A picture is worth a … 

Size of trace space on Γ : 7

Dirichlet boundary

Matched by the mesh



X-FEM case

Size of trace space on Γ : 13



•Trace of the inner field on the Dirichlet boundary is very rich 
when the boundary is not matched. 

•If strong imposition of Dirichlet (naive approach), poor fluxes on 
the boundary (boundary locking) and strong oscillations of the 
reactions forces (Ji and Dolbow 2004).

Summary of the Dirichlet issue with X-FEM

We need to relax the Dirichlet imposition



Possible approaches

•Lagrange multipliers: Difficulties : choose the 
correct space. Advantage : reuse of classical contact 
algorithms.

•Penalty method: where to integrate the penalty term  
and classical drawbacks (choice of the penalty 
parameter and degraded conditioning).

•Nitsche’s method: Difficulties : determination of a 
parameter to insure the stability of the system (inf-sup 
related in fact). Hard to extend to non-linear bulk 
behavior. Not easy to reuse all classical contact 
algorithms.

 



Lagrange multiplier formulation

Babuska 1973



A deeper look at the naive approach

Case a :  λ1 λ2 λ3 indep.

Case b :  λ2 = λ3 Case c :  λ2 = (1-e) λ1 + e λ3



Goal

• Reduction of the Lagrange multiplier 
space

• Pass the patch test (necessary 
condition)

• Ensure LBB condition (inf-sup numerical 
test by Bathe et al.)

• Also check non oscillatory character of 
the lagrange mutliplier

• Check convergence rates of u et 



•Select the essential edges : these are the minimum set of 
edges connecting the nodes from one side to the other.
•Attach a Lagrange multiplier to each essential edge
•If a set of edges emanate from the same node, they share 
the same Lagrange multiplier.
•For the non essential edges, the Lagrange multiplier is 
obtained by linear combination.

ALGORITHM TO DESIGN THE LAGRANGE 
MULTIPLIER SPACE (Géniaut et al. REMN).



Theoretical inf-sup condition  

Numerical inf-sup condition (Malkus 81, Chapelle and 
Bathe 93)

Independant of h

The stability of β with respect to h is 
checked on a sequence of meshes

The value of β  is simply the min of µ in the 
following generalized eigen-value problem



Results with the naive 
Lagrange multiplier space

Results with the updated 
lagrange multplier space

Also, very satisfactory results with various types of meshes 



Inner interface condition

Phase transformation

Glued material interface



Inner interface condition





PART 3 Applications



Application to an RTM mold filling problem



Topological change of the front 

treated by level sets

Evolution of the front position with time



Contact patch test  (no friction)

Geniaut PhD thesis



Results for the pressure 
with the naive and reduced space 



Contact with friction (Geniaut thesis)  



Deformed shape (exagerated)



Contact pressure 



Tangential  force



CONCLUSIONS 

•Great care must be taken to impose stiff boundary 
conditions in X-FEM (as in FEM...).

• The naive approach fails and the reason is the 
exceeding size of the Lagrange multiplier space

•A systematic approach to reduce the space is 
proposed and removes the locking

•The approach seems applicable to all types of stiff 
constitutive law on the interface.

•Contact with friction was taken into account (with 
Ben Dhia  continuous contact formulation) as well as 
mold filling with a potential fluid.


