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Overview

• Need for parametric model reduction

• Optimal H2 controller for LMS concrete car benchmark

• The LBF acoustic aquarium

• Numerical improvements in Fraunhofer model reduction toolbox

• New theoretical results
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Need for parametric model reduction
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Need for parametric model reduction

• Fitting FE-models to measurements

• Treatment of  non-linear boundary conditions

• Sensitivity analyses

• Model based controller design

• Simulation based design optimization

Whenever evaluating large FE-models

• must be repeated many times (e.g. optimization)

• is very expensive (e.g. frequency response)
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Optimal H 2 controller for 

LMS concrete Car benchmark
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Optimal model based H 2 controller of LMS concrete car

Optimization parameters:
Controller gains + Patch coordinates

• (x,y) of patch

Outputs:
SPL at passengers’ heads

FE Model:
multi-field, ~100.000 DOFs

Inputs:
piezo voltage & volume velocity of loudspeaker
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Step 1: create reduced parametric model using Fraunhofer model
reduction toolbox
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1. Write usual APDL script
without solution partAPDL script describing

parametric fully coupled 

multi-field ANSYS
®

 model

ANSYS
®

 full file 

with original 

system matrices 

and row-dof 

assignment

Reduced 

parametric 

state space 

model and  

info on I/O 

channels

MATLAB
®

toolbox 

MRT (Fraunhofer 

Model Reduction 

Toolbox) 

ANSYS
®

multiphysics

Read and modify 

parameters

Call in batch mode

write

Set reduction 

parameters, 

import and reduce 

ANSYS
®

 model

How to generate a parametric reduced model with MRT

future inputs

future parameters

potential input/output nodes

no export commands required!
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How to generate a parametric reduced model with MRT

Folientext
APDL script describing

parametric fully coupled 

multi-field ANSYS
®

 model

ANSYS
®

 full file 

with original 

system matrices 

and row-dof 

assignment

Reduced 

parametric 

state space 

model and  

info on I/O 

channels

MATLAB
®

toolbox 

MRT (Fraunhofer 

Model Reduction 

Toolbox) 

ANSYS
®

multiphysics

Read and modify 

parameters

Call in batch mode

write

Set reduction 

parameters, 

import and reduce 

ANSYS
®

 model

2. Change prameters
in Matlab GUI 

Select load inputs
Select parameters

Set parameter ranges
Set order of interpolating
polynomial

Select nodal inputs

Select nodal outputs
Choose reduction parameters
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How to generate a parametric reduced model with MRT

APDL script describing

parametric fully coupled 

multi-field ANSYS
®

 model

ANSYS
®

 full file 

with original 

system matrices 

and row-dof 

assignment

Reduced 

parametric 

state space 

model and  

info on I/O 

channels

MATLAB
®

toolbox 

MRT (Fraunhofer 

Model Reduction 

Toolbox) 

ANSYS
®

multiphysics

Read and modify 

parameters

Call in batch mode

write

Set reduction 

parameters, 

import and reduce 

ANSYS
®

 model

3. Start reduction

APDL script is automatically modified

ANSYS is automatically called in batch
mode and system written to full-file

ANSYS model is automatically imported
and reduced to state space model
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APDL script describing

parametric fully coupled 

multi-field ANSYS
®

 model

ANSYS
®

 full file 

with original 

system matrices 

and row-dof 

assignment

Reduced 

parametric 

state space 

model and  

info on I/O 

channels

MATLAB
®

toolbox 

MRT (Fraunhofer 

Model Reduction 

Toolbox) 

ANSYS
®

multiphysics

Read and modify 

parameters

Call in batch mode

write

Set reduction 

parameters, 

import and reduce 

ANSYS
®

 model

How to generate a parametric reduced model with MRT

This is repeated for 
different automatically 
chosen parameters 
covering design space

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

9 9

9 9

7 7

7 7

8 8

8 8



Slide 12

by direct reduction ?

How to get reduced models for new parameters ? 

• Needs another ANSYS license

• Needs calculations taking minutes to hours

• Does not use reductions created before

�NO !

New reduced model is interpolated from
existing ones

• without ANSYS

• within fractions of a second



Slide 13

Step 2: Form optimal H2 controller

• Work done by colleague A. Wirsen

• Weighting functions put emphasis on 
range from 20 to 200 Hz

• To be published at ECCM 2010 (also Paris)
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LBF acoustic aquarium
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LBF acoustic aquarium

• Matthias Kurch (Fraunhofer LBF-Darmstadt) provides 
Ansys FE-model and measurements of “acoustic 
aquarium” via Tiziana and me.

• Plans: Common paper on fitting damping and stiffness of 
screw-rubber layer to measurements using parametric 
reduced model. (LBF: M. Kurch, ITWM: J. Mohring, 
S. Lefteriu, A. Wirsen)

cavity: filled with air,
rigid walls

alu-plate

steel-frame

piezo-actuators
rubber-layer
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LBF acoustic aquarium : aluminum-plate

• Dimensions: 300x280x2 mm3

• 3 x 2 actuators (A1, A2, A3)

• PIC 155 50x25x0.5 

• 3 sensors (S1, S2, S3)

• PIC 155 10x10x0.1

With permission of M. Kurch (LBF)
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LBF acoustic aquarium: laser-scanning-vibrometer

• 99 measurement positions

• 3 measurements per excitation: microphone, vibrometer, piezo-sensor S2

• 298 frequency responses

• Hammer excitation

With permission of M. Kurch (LBF)
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• Aluminum-plate, steel-frame, rubber-layer: 
SOLID186

• Actuators and sensors: SOLID226

• Air volume: FLUID30

• Measurement positions coincide with 
nodes of FE-mesh

• 35537 nodes  

LBF acoustic aquarium: finite element model 

With permission of M. Kurch (LBF)
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LBF acoustic aquarium: need for fitting parameters of screw-
rubber-layer

621,30 Hz 655,51 Hz

With permission of M. Kurch (LBF)
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Numerical improvements in Fraunhofer

model reduction toolbox
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Numerical improvements   

• Depending on number of parameters and order of polynomial 
we have to build and reduce several 10 or 100 FE models 

• This can be done in parallel without any communication,
if enough cores and Ansys licenses are available

• Full parametric LMS car model takes about 45 min
(12 evaluations, 32 cores, 5 Ansys licenses)     

Parallel version



Slide 22

Numerical improvements   

• Continuation of common work with Julian

• Goal: reduce

• Instead of standard moment matching, i.e. computing

form incomplete SVD of operator T without forming 
matrix explicitly

U essential states to project on.

Efficient reduction of 
thermal problems with 
many inputs (area sources) ,Ex Ax Bu y Cx= + =&

( )21 1 1 1 1orth , , ,V A B A EA B A E A B− − − − − =   
L

( )1 1 1 1 1, , ,
k

T A B A EA B A E A Bξ ξ− − − − − =   
L

*T USV≈
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New theoretical results on 

parametric reduction via matrix

matching
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Idea of matrix matching

Interpolate matrices

…
Bring realizations close to first
one by solving gen. Sylvester 
eqns.  for similarity transform

…Reduced models

Independent reduction

…
FE-models for selected

parameters

( )1 1 1 1, , ,E A B C% %% %

( )1 1 1 1( ), ( ), ( ), ( )E p A p B p C p ( )( ), ( ), ( ), ( )n n n nE p A p B p C p

( ), , ,k k k kE A B C% %% %

( )1 1 1 1, , ,E A B C
( (( ( 1 1 1, , ,

k

k k k k k k k k k k

A

T E T T A T T B C T− − −
 
 
 
 

(

% %% %

14243

( ) ( )i i
i

A p p Aω= Σ
( (
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Success of matrix matching

• Poles move correctly with 
the parameters, even in 
case of eigenvalue-
crossing

• FE-mesh may change 
topology
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Success of matrix matching

• Poles move correctly with 
the parameters, even in 
case of eigenvalue-
crossing

• FE-mesh may change 
topology
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Assume                             .    Expect                  .

Keep      , but replace realization of      by equivalent one:

with             ,   i.e.  .

Linear interpolation of matrices yields nonsense:

Choosing realizations optimal for interpolation

Consider linear interpolation of one-parametric class of 
standard state space systems

Models are already reduced, i.e. typical state space 
dimension < 100.

( ) [ ]( ), ( ), ( ) : ( ) ( ) , ( ) , 0,1p A p B p C p x A p x B p u y C p x pΣ = = + = ∈&

For illustration

1 0 ( , , )A B CΣ = Σ =Quality of interpolation 
depends strongly on 
chosen realization

Example 1

0.5 0 1Σ = Σ = Σ

( )1 1
1 , ,X AX X B CX− −′Σ = X I= − ( )1 , ,A B C′Σ = − −

( ) ( )0.5 0.5 , , 0. ( ,05 ,0), .A B C A B AC′Σ = + − − =

0Σ 1Σ
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Assume                                                       . Expect

Keep      , but replace realization of      by equivalent one:

Linear interp. is not minimal

Choosing realizations optimal for interpolation

Consider linear interpolation of one-parametric class of 
standard state space systems

Models are already reduced, i.e. typical state space 
dimension < 100.

( ) [ ]( ), ( ), ( ) : ( ) ( ) , ( ) , 0,1p A p B p C p x A p x B p u y C p x pΣ = = + = ∈&

For illustration

1 0

0 1 0 1 0
, ,

0 0 1 0 1

α
β

      
Σ = Σ =       

      
Quality of interpolation 
depends strongly on 
chosen realization

Example 2

0.5 0 1Σ = Σ = Σ

1

0 0 1 0 1
, ,

0 1 0 1 0

β
α

      ′Σ =       
      

0.5

( ) / 2 0 1/ 2 1/ 2 1/ 2 1/ 2
, ,

0 ( ) / 2 1/ 2 1/ 2 1/ 2 1/ 2

α β
α β

 +      ′Σ =       +      

0Σ 1Σ
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Choosing realizations optimal for interpolation

1( ) , ( ) , 1,2i i i i i iH s C M B M sI A i−= = − =

( )( )( )0 0 0( )pH s C p C M p M B p B= + ∆ + ∆ + ∆

Known : 
Interpolating transfer 
functions works fine for s
away from poles

Idea: compare this 
interpolation with transfer-
function of interpolated 
matrices at “save” s

Difference can be estimated

( )( )( )
0 1 1 0

0 0 0 0 0 0

( ) (1 ) ( ) ( ), i.e. with

(1 )

pH s p H s pH s B B B

p C M B p C C M M B B

= − + ∆ = −

= − + + ∆ + ∆ + ∆

%

( ) ( )3
0 0 0

( ) ( )

(1 )

p pH s H s

p p C M B CM B C M B O
∆

−

= − ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ⋅

%

144444424444443

2 2 2

1 0 1 0 1 0

0 0 0 0

0 0

,

with , etc.

M M B B C C

B C M C

M B

α β γ

α β

∆ ≤ − + − + −

= =
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Choosing realizations optimal for interpolation

Idea: Minimize bound for 
difference over all equi-valent
realizations of 

For (almost) unitary X this is 
(almost) equivalent to 
minimizing  

Claiming necessary cond. 
with Frobenius-norm leads to 
generalized Sylvester 
equation for X

1Σ

2 2 21 1
1 0 1 0 1 0( )J X X M X M X B B C X Cα β γ− −= − + − + −%

2 2 2

1 0 1 0 1 0( )J X M X XM B XB C X Cα β γ= − + − + −

( )[ ] 0J X H H′ = ∀

( )* *, ,
F

A A tr A A AB BA A A= = = =

( ) ( )
( )

* * * *
1 1 1 1 0 0 0

* *
1 0 1 0

0

* *
1 0 1 0M X M M

M M C C X X M

X

M B B

B B C CM

α γ α β

βα γ− = ++

+ + +
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Open questions

Stability

1pΣ
2pΣ

3pΣ
4pΣ

• Assume       are stable . Are so the interpolated systems?

• Answered by Sanda

ipΣ

?pΣ
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Open questions

Unitarity • True error bound 
2 2 21 1

1 0 1 0 1 0( )J X X M X M X B B C X Cα β γ− −= − + − + −%

2 2 2

1 0 1 0 1 0( )J X M X XM B XB C X Cα β γ= − + − + −

and the one used for finding optimal Transformation X

coincide only, if X is unitary .

• If some modes enter/leave with changing  parameters, 
then X might become singular

• Robust construction of X by claiming unitarity explicitly

• Answered by Sanda
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Open questions

Influence of interpolation
scheme ?

• global polynomial

• piecewise polynomial

• spline

• Answered by Sanda

How to scale different i/o’s 
(e.g. pressures, voltages) 

• under investigation
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To be continued by Sanda



Slide 35

Introduction

It is demonstrated 

• How to optimize a smart structures application modeled by ANSYS® 

(e.g. optimal position of piezo patch on firewall)

• which requires many expensive evaluations (e.g. frequency responses)

• by parametric reduced models

• using our Model Reduction Toolbox for ANSYS® / Matlab®
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Sample problem: optimal patch position for concrete  car
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Sample problem: optimal patch position for concrete  car

setup
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Sample problem: optimal patch position for concrete  car

parametric

optimization
• (x,y) of patch
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Sample problem: optimal patch position for concrete  car

From multi-field Ansys model 

to

parametric reduced Matlab

state space model
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Influence of patch position on efficiency

Pressure field by loudspeaker to be 
compensated at driver‘s ear (50 Hz)
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Influence of patch position on efficiency

Associated normal displacement
of plate (firewall)
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Influence of patch position on efficiency

Admissible patch positions  
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Influence of patch position on efficiency

Efficient position:
pattern resembles the one
induced by loudspeaker 
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Influence of patch position on efficiency

Inefficient position:
pattern “orthogonal” to the

one induced by loudspeaker 
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Need for parametric reduced model

• In general, patch position must be uniformly effective on a 
whole frequency range

• Evaluating position requires computing frequency response
of transfer function loudspeaker ���� driver’s ear

• ANSYS® requires 160s for single frequency (Xeon 2.5 GHz)

� We need reduced model

• Many different patch positions must be tried:
several local minima , Newton iteration about each minimum

� We need parametric model which can be evaluated at new 
positions without creating and reducing new ANSYS ®

models
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Parametric reduced model

Admissible region
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Parametric reduced model

Multi-field Ansys model for parameters p1 = (x1,y1)

create

Admissible region
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Parametric reduced model

state space model for parameters p1 = (x1,y1)

reduce



Slide 49

Parametric reduced model

Multi-field Ansys model for parameters p2 = (x2,y2)

create
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Parametric reduced model

state space model for parameters p2 = (x2,y2)

reduce
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Parametric reduced model

state space model for parameters p9 = (x9,y9)

reduce

Multi-field Ansys model for parameters p9 = (x9,y9)
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Parametric reduced model

Reduced state space 
model for other 
parameters

by reduction
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Parametric reduced model

Reduced state space 
model for other 
parameters

x
x

x

by reduction
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Parametric reduced model

Reduced state space 
model for other 
parameters

by interpolation
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Challenge 1: reduction of  multi-field FE models

• Consider multi-field Ansys model of concrete car for fixed parameter set
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Challenge 1: reduction of  multi-field FE models

• Consider multi-field Ansys model of concrete car for fixed parameter set

• Built-in reduction schemes of Ansys and Matlab fail due to non-symmetric/singular 
matrices or non-Rayleigh damping and size (~100.000 DOFs), respectively.  

singular non_Rayleigh damping non-symmetric
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Challenge 1: reduction of  multi-field FE models

Solution

• Turn 2nd order system into 1st order system
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Challenge 1: reduction of  multi-field FE models

Solution

• Turn 2nd order system into 1st order system

• Turn to shift and invert form (largest eigenvalues correspond to those of original system 
close to shift s0). With T = A –s0E:
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Challenge 1: reduction of  multi-field FE models

Solution

• Turn 2nd order system into 1st order system

• Turn to shift and invert form (largest eigenvalues correspond to those of original system 
close to shift s0). With T = A –s0E:

• Project on nxk matrices V,W with W*V=I, k<<n from modal analysis or Arnoldi process
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Challenge 1: reduction of  multi-field FE models

Contribution by fellows

• Sanda: structure preserving reduction: Reduced model is again of 2nd order.

• Julian: hybrid reduction scheme for systems with many inputs and outputs combining 
modal truncation and moment matching.
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Challenge 1: reduction of  multi-field FE models

Contribution by fellows

• Sanda: structure preserving reduction: Reduced model is again of 2nd order.

• Julian: hybrid reduction scheme for systems with many inputs and outputs combining 
modal truncation and moment matching.

J. Stoev and J. Mohring. Hybrid reduction of non-symmetric mimo systems. Submitted to 
Systems & Control Letters (Status: second revision)
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Challenge 2: interpolation of reduced state space m odels

Polynomial interpolation

Polynomial interpolation of scalar function (example: 1 parameter x, 2nd order)
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Challenge 2: interpolation of reduced state space m odels

Polynomial interpolation

Polynomial interpolation of scalar function (example: 1 parameter x, 2nd order)

System matrices may be interpolated in exactly the same way:
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Challenge 2: interpolation of reduced state space m odels

How to choose realizations?

• Realizations                                and 

have same transfer function 

i.e. they describe same system. 

• Interpolating badly chosen realizations may completely fail:

Consider one-parametric family of single state SISO systems

Realizations of same system (T=-1), but linear interpolation gives                              .                         
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Challenge 2: interpolation of reduced state space m odels

Looking for way out

• Interpolate (unique) transfer function
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Challenge 2: interpolation of reduced state space m odels

Looking for way out

• Interpolate (unique) transfer function



Slide 67

Challenge 2: interpolation of reduced state space m odels

Looking for way out

• Interpolate (unique) transfer function

• Consider normal forms based on
sorted eigenvalues:                          
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Challenge 2: interpolation of reduced state space m odels

Looking for way out

• Interpolate (unique) transfer function

• Consider normal forms based on
sorted eigenvalues:                          
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Challenge 2: interpolation of reduced state space m odels

Looking for way out

• Interpolate (unique) transfer function

• Consider normal forms based on
sorted eigenvalues:                          
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New approach

• Select arbitrary realization                                   for first parameter as reference

• Choose realizations                                            for other parameters as close as possible to 
reference

Challenge 2: interpolation of reduced state space m odels
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New approach

• Select arbitrary realization                                   for first parameter as reference

• Choose realizations                                            for other parameters as close as possible to 
reference

• Formally: find transform T minimizing

Challenge 2: interpolation of reduced state space m odels
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New approach

• Select arbitrary realization                                   for first parameter as reference

• Choose realizations                                            for other parameters as close as possible to 
reference

• Formally: find transform T minimizing

leading to matrix equation for T

Challenge 2: interpolation of reduced state space m odels
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• ANSYS® model is created and reduced at 9 positions

• Reduced models are interpolated bilinearly

• Efficiency function                                            is evalutaed at 

50x50=2500 positions, which takes 100s altogether 

Optimal patch positions for different frequency ran ges

min max

1/ 2
2

ker( ) / ( )
k

piezo k spea kh i h i
ω ω ω

ε ω ω
≤ ≤

 
=  
 

∑
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Optimal patch positions for different frequency ran ges
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Optimal patch positions for different frequency ran ges

Response to loudspeaker:
- independent of patch position
- counterchecked with ANSYS®
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Optimal patch positions for different frequency ran ges

Response to patch
- in 9 positions where ANSYS® models
were created and reduced

- difference > 20dB 
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Optimal patch positions for different frequency ran ges

Response for patch position optimally 
effective at 50Hz computed
- for interpolated reduced model 
(small effort)

- for directly created and reduced model 
(big effort)
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instead of Conclusion: 

Request for collaboration

Are there fellows interested in optimizing their smart  
structures design with MRT, possibly at Kaiserslautern?


