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Outline of PresentationOutline of Presentation

••Reduce the order of models for largeReduce the order of models for large--amplitude amplitude 
(geometrically nonlinear) vibrations of fluid(geometrically nonlinear) vibrations of fluid--filled circular filled circular 
cylindrical shells by using the proper orthogonal cylindrical shells by using the proper orthogonal 
decomposition (POD) method decomposition (POD) method 

••LargeLarge--amplitude vibrations of rectangular platesamplitude vibrations of rectangular plates

••Flutter of imperfect shells in supersonic flowFlutter of imperfect shells in supersonic flow

••Nonlinear vibrations and stability of circular cyli ndrical Nonlinear vibrations and stability of circular cyli ndrical 
shells conveying flow shells conveying flow 



REDUCEDREDUCED--ORDER MODELS FOR NONLINEAR VIBRATIONSORDER MODELS FOR NONLINEAR VIBRATIONS

OF CYLINDRICAL SHELLS VIA THE PROPEROF CYLINDRICAL SHELLS VIA THE PROPER

ORTHOGONAL DECOMPOSITION METHODORTHOGONAL DECOMPOSITION METHOD



22 2 2
4 0

2 2 2 2 2

2 22 2 2 2
0 0

2 2 2

1 1

2

wF F w
D w c h w h w f p

R x R x x

w wF w F w

x x x x

∂∂ ∂ ∂ρ
∂ ∂ θ ∂ ∂

∂ ∂∂ ∂ ∂ ∂
∂ ∂ θ ∂ ∂ θ ∂ ∂ θ ∂ ∂ θ ∂ θ

  
∇ + + = − + + +  

 

   
− + + +    

   

& &&

2 2 2 22 2 2 2 2 2
4 0 0 0

2 2 2 2 2 2 2

1 1 1
2

w w ww w w w w w
F

E h R x R x x x x x x

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ θ ∂ ∂ θ ∂ ∂ θ ∂ ∂ ∂ θ ∂ ∂ θ

    
∇ = − + + − + −    

    

DonnellDonnell’’ s nonlinear shallows nonlinear shallow--shell shell 
theorytheory

with radial geometric imperfections wwith radial geometric imperfections w00



( ){ }2 2 2 2 2( ) 0xM D w x w R∂ ∂ ν ∂ ∂ θ = − + = 

w = w0 = 0

2 2
0 0w x∂ ∂ = at x = 0, L

Nx = 0 and v = 0 at x = 0, L

OOutut--ofof--plane boundary conditionsplane boundary conditions

InIn --plane boundary conditionsplane boundary conditions



3 3

, ,
1 1

4

(2 1),0 (2 1)
1

( , , ) ( ) cos ( ) ( ) sin ( ) sin( )

( ) sin( )

m k n m k n m
m k

m m
m

w x t A t k n B t k n x

A t x

θ θ θ λ

λ

= =

− −
=

 = + 

+

∑ ∑

∑
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HarmonicHarmonic
excitationexcitation

eigenmodeseigenmodes
16 dofs16 dofs

Driven modeDriven mode

Companion Companion 
modemode

Circular shellCircular shell

Driven modeDriven mode Companion modeCompanion mode

Axisymmetric modesAxisymmetric modes
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PROPER ORTHOGONAL DECOMPOSITION PROPER ORTHOGONAL DECOMPOSITION 
(POD) METHOD(POD) METHOD

Conventional Galerkin solutionConventional Galerkin solution

POD solutionPOD solution

Basis functionsBasis functions(eigenmodes)(eigenmodes)
Generalized coordinatesGeneralized coordinates

dofsdofs

Proper orthogonal coordinatesProper orthogonal coordinates

Proper orthogonal modesProper orthogonal modes

Reduced dofsReduced dofs
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PO modes are extracted PO modes are extracted from temporal snapshots of the response (from from temporal snapshots of the response (from 
Galerkin solution in the present case)Galerkin solution in the present case)

Minimizing the objective functionMinimizing the objective function
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Numerical ResultsNumerical Results
L = 0.52 mL = 0.52 m
R = 0.1494 mR = 0.1494 m
h = 0.519 mmh = 0.519 mm
E = 198 * 10E = 198 * 101111 PaPa
ρρ = 7800 kg/m= 7800 kg/m33

ρρFF = 1000 kg/m= 1000 kg/m3 3 ((water filledwater filled))
νν= 0.3= 0.3
Fundamental mode (n = 5, m = 1)Fundamental mode (n = 5, m = 1)
Harmonic point excitation of 3 N at x = L/2 and Harmonic point excitation of 3 N at x = L/2 and θθθθθθθθ = 0= 0
ζζζζζζζζ1,n1,n = 0.0017= 0.0017
ωωωωωωωω1,n1,n = 77.64 Hz= 77.64 Hz

Software: Software: AUTOAUTO for bifurcation analysis and continuationfor bifurcation analysis and continuation
IMSL Fortran IMSL Fortran –– DIVPAG routineDIVPAG routine



 , stable solutions;, stable solutions;

—— —— —— , unstable periodic solutions, unstable periodic solutions

TR: NeimarkTR: Neimark --Sacker (torus) bifurcationsSacker (torus) bifurcations

BP: Pitchfork bifurcationsBP: Pitchfork bifurcations

1,Maximum Amplitude of driven mode ( )nA t

1,Maximum Amplitude of companion mode ( )nB t

Conventional Galerkin Conventional Galerkin 
results (16 dofs)results (16 dofs)



1,Time response at excitation frequency / 0.99nω ω =

1, ( )nA t

1,2 ( )nA t

1,0( )A t

Harmonic force excitation

Case “a”



1,nTime response at excitation frequency ω/ω = 0.991 corresponding to point "c"

1, ( )nA t

1, ( )nB t



Significance of POD eigenvalues versus the number of proper orthogonal 
modes; case “a”
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Significance of POD eigenvalues versus the number of proper orthogonal 
modes; case “c”



POD model POD model (2dofs) (2dofs) versus conventional versus conventional GalerkinGalerkin model, case model, case ““ aa””

Maximum amplitude of vibration versus excitation frequencyMaximum amplitude of vibration versus excitation frequency

POD model (2 POD model (2 dofsdofs))

unstable conventional unstable conventional GalerkinGalerkin solutionsolution (16 dofs)(16 dofs)

stable conventional stable conventional GalerkinGalerkin solutionsolution (16 dofs)(16 dofs)

Branch 2 is not obtainedBranch 2 is not obtained



1,nMaximum amplitude of   A (t) versus excitation frequency

POD modelPOD modelss with 2 with 2 and 3 dofand 3 dofs (coincident)s (coincident)

Convergence of the solution with the number of dofConvergence of the solution with the number of dof
POD model, case POD model, case ““ aa””

POD model with 1 POD model with 1 dofdof



POD model versus conventional POD model versus conventional GalerkinGalerkin model, case model, case ““ cc””

 stable stable conventional conventional GalerkinGalerkin solutionssolutions

—— —— —— unstable conventional unstable conventional GalerkinGalerkin solutions.solutions.

1,Maximum Amplitude of  ( )nA t

1,Maximum Amplitude of ( )nB t

Maximum amplitude of vibration versus 
excitation frequency

POD model (POD model (33 dofsdofs))

NO PITCHFORK BIFURCATIONS



POD model versus POD model versus GalerkinGalerkin model, case model, case ““ cc”” combined combined ““ --cc””
Maximum amplitude of vibration versus 

excitation frequency

1,Maximum Amplitude of  ( )nA t

 stable stable conventional conventional GalerkinGalerkin solutionssolutions

—— —— —— unstable conventional unstable conventional GalerkinGalerkin solutions.solutions.

1,Maximum Amplitude of ( )nB t

POD model (POD model (33 dofsdofs))

PITCHFORK BIFURCATIONS DETECTED
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1,nTime response at excitation frequency ω/ω = 0.991

1, ( )nA t

1, ( )nB t

1,0( )A t

POD model Conventional Galerkin

Driven mode

Companion mode

1st axisymmetric mode

case “c”



1,n

Case "c" :

time response

at ω/ω = 0.995
Harmonic force excitation

1, ( )nA tDriven mode

1, ( )nB tCompanion mode

1,0( )A t1st axisym. mode



ConclusionsConclusions

••Dimension of model for nonlinear vibrations of shells has Dimension of model for nonlinear vibrations of shells has 
been reduced from 16 to 3 dofs by using the POD methodbeen reduced from 16 to 3 dofs by using the POD method

••An accurate reducedAn accurate reduced--order model has been builtorder model has been built

••The most accurate reducedThe most accurate reduced--order model has been built by order model has been built by 
using the time response with amplitude modulationsusing the time response with amplitude modulations



Nonlinear Vibrations of Nonlinear Vibrations of 
Circular Cylindrical PanelsCircular Cylindrical Panels

and and Rectangular PlatesRectangular Plates
MM arco arco AmabiliAmabili

Dipartimento di Ingegneria Industriale, Università di Parma 
Parco Area delle Scienze 181/A, Parma, 43100 Italy
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MM iddleiddle surface strainsurface strain--displacement displacement (Donnell)(Donnell)

Elastic Strain Energy of the PanelElastic Strain Energy of the Panel

u, v, w = displacements in x, u, v, w = displacements in x, θθθθθθθθ and r directions of the mean planeand r directions of the mean plane
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MM iddleiddle surface strainsurface strain--displacement displacement (Novozhilov)(Novozhilov)
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CChangeshangesin the curvature and torsion in the curvature and torsion (Novozhilov)(Novozhilov)
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Mode Expansion, Kinetic Energy and External LoadsMode Expansion, Kinetic Energy and External Loads
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Numerical and Experimental 
Results for the limit case 

R         : Rectangular plate→ ∞

Software: Software: AUTOAUTO for bifurcation analysis and for bifurcation analysis and 
continuation of nonlinear ODEcontinuation of nonlinear ODE



Benchmark caseBenchmark case
(Chu & Herrmann , Ribeiro, Kadiri & Benamar) (Chu & Herrmann , Ribeiro, Kadiri & Benamar) 

h = 1 mmh = 1 mm
L = 300 mmL = 300 mm
l  = 300 mml  = 300 mm

Density = 2778 Kg/m^3Density = 2778 Kg/m^3
Young Module = 70 GpaYoung Module = 70 Gpa

Poisson Ratio = 0.3Poisson Ratio = 0.3

Boundary Conditions:Boundary Conditions:
u = v = w = 0      at  x = 0, L   and   y = 0, lu = v = w = 0      at  x = 0, L   and   y = 0, l

(zero displacements at the edges)(zero displacements at the edges)



Validation of the present model (16 dofs) Validation of the present model (16 dofs) 

Ribeiro

Kadiri & BenamarChu & Herrmann

Present model



L

l

h (thickness) = 0.3 mmh (thickness) = 0.3 mm
L (x lenght) = 515 mmL (x lenght) = 515 mm
l (y lenght) = 184 mml (y lenght) = 184 mm

Density = 2700 Kg/m^3Density = 2700 Kg/m^3
Young module = 69 GPaYoung module = 69 GPa

Poisson ratio = 0,33 Poisson ratio = 0,33 

The experimental aluminum plateThe experimental aluminum plate



Boundary conditions used to simulate the Boundary conditions used to simulate the 
experimental plate experimental plate 

v = 0,  Ny = 0

u = 0,  Nx = 0

u = 0,  Nx = 0

v = 0,  Ny = 0



Convergence of foundamental mode Convergence of foundamental mode 
m = n =1 (halfm = n =1 (half--waves in x and y directions) waves in x and y directions) 

3 dofs

27 dofs
9 dofs

12 dofs
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Comparison between theory and experiments Comparison between theory and experiments 
(linear results)(linear results)

n = half-waves in y direction

m = half-waves in x direction
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Comparison between experimental and Comparison between experimental and 
numerical results numerical results 

(Excitation force = 0.0005 N, linear case)(Excitation force = 0.0005 N, linear case)



Comparison of theory and experiments Comparison of theory and experiments 
(Excitation force = 0.02 N, nonlinear case)(Excitation force = 0.02 N, nonlinear case)

Hardening Hardening 
resultsresults



Different boundary conditionsDifferent boundary conditions

—— •• —— •• —— : free displacements and rot. (experimental case): free displacements and rot. (experimental case)
—— —— —— : zero displacements : zero displacements 
 :: zero displacements and rotationszero displacements and rotations



ConclusionsConclusions

••Refined model for nonlinear vibrations Refined model for nonlinear vibrations 
of circular cylindrical panels and flat of circular cylindrical panels and flat 
platesplates

••Convergence of solutionConvergence of solution

••Good agreement with experimental Good agreement with experimental 
resultsresults

••Model suitable for different boundary Model suitable for different boundary 
conditionsconditions



Nonlinear Nonlinear Supersonic Flutter of Imperfect Supersonic Flutter of Imperfect 
Circular Cylindrical ShellsCircular Cylindrical Shells
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M = Mach number

γ= = = = adiabatic esponent

a∞∞∞∞ = free-stream speed of sound 

p∞∞∞∞ = free-stream static pressure  

LINEARIZED PISTON THEORYLINEARIZED PISTON THEORY

THIRD ORDER PISTON THEORYTHIRD ORDER PISTON THEORY

M > 1.6 
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22 DOF M22 DOF Modelodel with Geometric Imperfectionswith Geometric Imperfections

Onset of Flutter (Hopf bifurcation)Onset of Flutter (Hopf bifurcation)

Travelling Wave FlutterTravelling Wave Flutter



PARTIAL REPRESENTATION OF THE FLUTTERING SHELLPARTIAL REPRESENTATION OF THE FLUTTERING SHELL

4500 Pap∞ =

displacement augmented 1000 times

n = 23



Nonlinear stability of circular cylindrical Nonlinear stability of circular cylindrical 
shells conveying flowing liquidshells conveying flowing liquid
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FluidFluid --Structure Interaction: Potential FlowStructure Interaction: Potential Flow
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Divergence (Divergence (BucklBuckl ing) ofing) of Shell Shell by Flowby Flow

Jumps under perturbationJumps under perturbation



Buckled Shell (Divergence Instability due to flow)Buckled Shell (Divergence Instability due to flow)

CoupledCoupled--mode bifurcationmode bifurcation

Mode  n = 5

V = 2 (< VV = 2 (< VCRIT.  LIN.CRIT.  LIN. )) V = 3 (< VV = 3 (< VCRIT.  LIN.CRIT.  LIN. )) V = 4V = 4



LARGELARGE --AMPLITUDE FORCED VIBRATIONS OF A WATERAMPLITUDE FORCED VIBRATIONS OF A WATER --FILLED FILLED 
CIRCULAR CYLINDRICAL SHELL WITH IMPERFECTIONS: CIRCULAR CYLINDRICAL SHELL WITH IMPERFECTIONS: 

COMPARISON OF THEORY AND EXPERIMENTSCOMPARISON OF THEORY AND EXPERIMENTS
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BIFURCATION DIAGRAM: SHELL WITH FLOWING FLOW BIFURCATION DIAGRAM: SHELL WITH FLOWING FLOW 
UNDER HARMONIC EXCITATION (CHANGING FREQUENCY)UNDER HARMONIC EXCITATION (CHANGING FREQUENCY)



ConclusionsConclusions
••It is necessary to study complex nonlinear dynamics and It is necessary to study complex nonlinear dynamics and 
fluidfluid --structure interaction by using small dimension modelsstructure interaction by using small dimension models

••Model are based on global discretization (hyperModel are based on global discretization (hyper--elements)elements)

••FluidFluid --structure interaction can be described with simplified structure interaction can be described with simplified 
but accurate models in several applications without CFDbut accurate models in several applications without CFD

••ReducedReduced--order models (POD) can be useful and accurateorder models (POD) can be useful and accurate


