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- implicit with non-smooth contact dynamics
for this presentation a 2D mono-dispersed version without
cohesion forces is used
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where S and S are the translational and rotation impulses due to collision ¢

*J. Fortin, O. Millet and G. de Saxcé, ‘Numerical prediction of granular
materials by an improved discrete element method’, Int. Jou. for Num.
Meth. in Engineering, 2005, 62:639-663
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1000kg/m?, normal and tangential restitution coefficients = (.8, 0.9

Result animations for gravitation flows without fluid forces
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Flow forces from semi-empirical relation by Ergun*
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where g 1s the fluid viscosity and & 1s the void fraction

*S. Ergun, ‘Fluid flow through packed columns’, Chem. Eng. Prog.,
48(2):89-94,1952
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Application of the PSI-Cell method of Crowe et al.*

to large particles

during each time step; force on particle using
algebraic relation

flow solver particle solver

force on fluid using
virtual representation

* C. T. Crowe, M. P. Sharma an D. E. Stock, ‘The Particle-Source-In-Cell (PSI-
Cell) Model for Gas-Droplet Flow, J. Fluids Engin., 1977, 325-332



Virtual representation of solid within the fluid
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Test of flow past a confined cylinder, R,, = 400
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2D predictions of mono-dispersed particles transported
through a conduit reduction without cohesion show

*Blockage of conduit by bridging/arching upstream of
reduction, without and with fluid forces acting on the
particles

oA critical particle size above which bridging occurs

Work on methodology for particle interaction with
numerically generated flow field based on extension of
PSI-Cell method Is In progress
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