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Motivation

Previous Work

Currently available approaches:

@ vector fitting (VF) used to construct models for known parameter
values, followed by a parametrization of the numerator and
denominator of the transfer function by linear combinations of basis
functions which are piecewise linear in each parameter [9, 8].

@ generalization of the Sanathanan-Koerner (SK) iteration (VF is a
particular case of SK) to the parametric case [10, 7]

@ multivariate formulation of the Orthonormal Vector Fitting
technique [2, 1]

@ recursive algorithm to compute the parametrized residues of the
multivariate transfer function [3]

@ generalization of multivariate Vector Fitting which includes
parameter derivatives [4].

are time & memory consuming.
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Problem Statement

Parametric modeling from measurements

Y in descriptor-form: Ex(t)=Ax(t) + Bu(t), y(t)=Cx(t)+ Du(t),
x(t): state, u(t): input, y(t): corresponding output, E, AcR"*" BER"*"
CeRP*") DERP*P are constant; [E, A, B, C,D]: a realization of X.

o tabulated/measurement data (e.g. S-parameters) given wrt

frequencies f;, i=1,..., ns, but also wrt one or more parameters as:
(i,k) (i,k)
seo st
fi, o, S(i’k) = : : (1)
i k i k
S s

@ one parameter « taking values ag, k=1,..., n,



Problem Statement

Parametric modeling from measurements

Y in descriptor-form: Ex(t)=Ax(t) + Bu(t), y(t)=Cx(t)+ Du(t),
x(t): state, u(t): input, y(t): corresponding output, E, AcR"*" BER"*"
CeRP*") DERP*P are constant; [E, A, B, C,D]: a realization of X.
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tabulated/measurement data (e.g. S-parameters) given wrt
frequencies f;, i=1,..., ns, but also wrt one or more parameters as:

ik ik
stk st
fi,ap, SR = : : (1)

S

1 5k
P

pp
one parameter « taking values ay, k=1,..., n,

Goal: find a parametric system X(«) which models (1), st its
transfer function computed for «y, evaluated at j - 2nf;, is close to
SU:R): H(eW) (27 )=Cln) (2mjfil — Ale)) 1B aS(K) j=1, ... ny
Moreover, X(a) for other «, should be close to the model one would
obtain from measurements performed for these new values.
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What we propose

Modeling step: Problem: construct LTI models X () for some fixed
parameter values ay (rational approximation or system identification -
can be solved in many ways)

Loewner matrix framework & Tangential interpolation [6, 5]

@ fast, accurate & robust
@ especially designed for many ports

@ models of small dimension

Generating Parametric Models: Interpolate between state-space matrices,
after applying a suitable similarity transformation

@ choice between different interpolation schemes
@ choice between the canonical form in which systems are brought
initially

@ constrain the transformation to be close to unitary
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Motivation

Recall: We want to solve
2 2 2
J(1'):aHM(°)—T*1M(1)TH +6HB(°)—T*1B(1)H —MHC(O)—C“)TH (2)
but, instead, we solve

~ 2 2 2
J(T):ozHTM(O)—M(l)TH+ﬂHTB(°)—B(1)H+7HC(°)—C(1)TH 3)
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Motivation

Recall: We want to solve
2 2 2
J(1'):aHM(°)—T*1M(1)TH +ﬁ“B(°)—T*1B(1)“ +7HC(°)—C(1)TH 2)
but, instead, we solve
- 2 2 2
Jm:O‘HTM(O)_M(l)THwHTB(O)_BmH”HC(O)_C(I)TH (3)

They are different, but by introducing an additional constraint in (3) to
enforce T to be close to unitary (T is unitary if T*T = TT* = 1), the
approximation of (2) by (3) makes sense.
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Motivation

Recall: We want to solve
2 2 2
JayxﬂM@—TAM“hﬂ+AP@LT*%“M+ﬂk@—dUﬂ] 2)
but, instead, we solve
- 2 2 2
KHQMTMQ—MOHH+ﬂh3m—B“M+ﬂkm—cmﬂ’ (3)

They are different, but by introducing an additional constraint in (3) to
enforce T to be close to unitary (T is unitary if T*T = TT* = 1), the
approximation of (2) by (3) makes sense.

Why?

o) o

because the 2-norm is invariant under a unitary change of basis.
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We add an additional term to (3)
N 2 2 2
I(T) = o TMO-MOT| 55| TBO-BY 1y | O —cOT| s T T 1),

0 appropriate scaling factor. Forming the Fréchet derivative, we have
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We add an additional term to (3)
IT)=a HTM“’)—M(”THerﬁ HTB@)—B(UHzﬂ HC(O)—C(UTH2+5 T 1|,
0 appropriate scaling factor. Forming the Fréchet derivative, we have
(aM(l)*M(1)+7C(1)*C(1))T+T(0¢M(°)M(O)*—f—ﬁB(O)B(O)*)—a(M(l)TM(O)*+M(1)*TM(°))
+0 4T(T*T—1)=BHB*,cV+c® (4)
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Unitary Constraint

We add an additional term to (3)
IT)=a HTM(O)—M(”TH2+6 HTB@)—B(UHzﬂ HC(O)—C(UTH2+5 T 1|,
0 appropriate scaling factor. Forming the Fréchet derivative, we have
(aM(l)*M(1)+7C(1)*C(1))T+T(0¢M(°)M(O)*—f—ﬂB(O)B(O)")—a(M(l)TM(O)*—i—M(l)*TM(O))
+0 4T(T*T—1)=BHB*,cV+c® (4)

@ T(T*T—I) makes (4) nonlinear in T, so it cannot be solved directly

@ we use a Newton-like procedure on the linearized (4), obtained by
writing T as To + AT and disregarding higher order terms in AT

@ we start with the initial guess To and add, at each step, a correction
AT which will make the solution T close to being unitary.
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Choice of sy

Where to choose the test frequency?

Recall: Al®)(sp)=(1—a)HO) (sp)+aH®) (s0)—H()(sp).
@ chosen away from the system poles
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Figure: The influence of sp on the errors

10



Unitary Constraint Choice of sy Stability Results

Outline

© Stability



Stability

Stability

Fact: Systems built for known parameter configurations are stable.
Question: Will the system obtained with our procedure also be stable for
any new parameter value?

Answer: Lyapunov stability theory [11].

Definition
Let L be a continous map from R” to R. It is called a Lyapunov function
for system x(t)=f(x(t)) if:

@ L is locally positive definite (L(x)>0, 0<||x||<r, for some r) &

o L is locally negative semidefinite (L(x)<0, 0<||x||<r»).

Theorem

o If3 L(x) for system x(t)=f(x(t)), then x=0 is a stable equilibrium
point in the sense of Lyapunov.

o If L(x)<0, 0<||x||<r2, for some r», then x=0 is an asymptotically
stable equilibrium point.
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Stability

Define a Lyapunov candidate function L(x) = x*Px, where P is
symmetric positive definite.

L(x) = x*Px 4+ x*Px = x*"A*Px + x*PAx = x* (A*P + PA)x < 0 (5)
—_——
-Q
@ if Q>0, x=0 is a stable equilibrium point.
9 if Q>0, x=0 is globally asymptotically stable & the system is stable.

@ this can be expressed as a linear matrix inequality (LMI):
PA+A*P<0 which always has a solution for A stable.
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Stability

X () are stable, for k=1,...,n,, and for a new «,
Nay Nay
AC) =3 WAl B =3 B (6)
k=1 k=1

and similarly for C(®), D(®), with ZZ‘;*l wy=L.
Goal: Find a common solution P, Vk=1,..., n,, to the inequalities

AP L PA) < 0 o A*diag(P,...,P) + diag(P,...,P)A < 0 (7)

N Ne
w AP L Py, Al < 0 = Z w Al p PZ w Al <0

k=1 k=1
~—_———
Alx)

where A=diag(A(), ... Alem)),
Solved with Matlab's LMI toolbox.
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Results

Error Measures

@ normalized Hoo-norm of the error system

Hoo error = maxi=1...k 91 (H(fwi) — S(’)) )
max;=1...k 01 (S('))

@ normalized Hp-norm of the error system

S HGws) — SO
poping {01

Hy error =

where

2 P P ; 2
[HGw) =89 =337 [Hisliwn) - SE2,,

ki=1 k=1




Results

Microstrip lines and an RC pair

o=y 0 e
N < i S
Port 1 [l R ' [5 Port 2
ol Y Yy P
D N — N

Figure: Microstrip lines and an RC pair

Nominal values: R = 4k, C = 0.2pF, w = 80um, ; = 3cm, b = 2cm,
for width & lengths of the microstrips, and h = 0.3mm, ¢, = 4, for the

dielectric height & permittivity.
This reproduces an interconnect link loaded by a device.



Results

Design parameter: width w

@ S-parameters of this 2-port system computed (via a full wave
simulation) for 100 frequencies between 10MHz and 10GHz

15 values of w between 60 and 130um in steps of 5um

for better conditioning, frequencies were scaled by 10~°

we use 8 responses for w={60, 70, ...,120,130} um for modeling
we identified systems of order 20 with D =0

CPU time for one model was 0.03s on average, and all 8 took 0.25s

e &6 ¢ ¢ ¢ ¢

LMI (7) was solved for a common P =- all our parametric models
will be stable (no matter how the weights are chosen)

@ w=90um was chosen as the reference system

o for all remaining systems, T in (3) was applied as a similarity
transformation; this took 0.51s
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Results

Different canonical forms and interpolation schemes
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Figure: Different canonical forms

(a) Polynomial

The connect the-dols ilerplart, using nerg!

(b) Piecewise

(c) Spline

Figure: Plots for different interpolation schemes



Results

Results for design parameter: width w
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Figure: Values for w

| | H> max | H> min |Hoo max| Hoo min |
modeling 1.3309e-4|1.1719e-4|1.2084e-3|1.1030e-3
polynomial with balanced|1.9319e-4|1.1939e-4 |1.2491e-3|1.0970e-3
polynomial with modal [7.3754e-3|5.3365e-4 (2.2093e-2|1.4944e-3
piecewise with balanced |5.8575e-4|2.4685e-4 |1.3116e-3|1.1477e-3
piecewise with modal |5.4896e-3|8.2878e-4 |1.3753e-2|2.2075e-3
spline with balanced |1.4855e-4|1.1979e-4|1.2202e-3|1.1022¢-3
spline with modal 5.2803e-3|1.5953e-4 |1.2509e-2|1.1517e-3
validation 1.3213e-4| 1.1860e-4|1.2032¢-3|1.1140e-3

Table: Errors




Results

Results for unitary constraint for design parameter:
width w

| |'H2 ma><| H> min |Hoo max|HC>O min|
polynomial with
balanced 1.9236e-4|1.1938e-4
polynomial with
modal 1.3852 |1.6774e-1
piecewise with
balanced 6.4347e-4|3.0443e-4
piecewise with

1.2483e-3|1.0962e-3

4.6274 |3.6683e-1

1.2204e-3|1.0917e-3

modal 7.8957e-1|3.7693e-3| 2.4783 |1.4491e-2
spline with

balanced 1.4854e-4|1.1956e-4|1.2202e-3|1.1022e-3
spline with

modal 0.0187e-1|6.1852e-2| 2.7540 |1.1561e-1

Table: Errors when adding the unitary constraint




Plots for design parameter: width w
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Figure: Plots for design parameter: width w

systems used for modeling, blue:



Results

Results for design parameters: resistor R € capacitor C

| | H> max | H> min |Hoo max| Hoo mMin |

modeling  [1.9043e-4] 1.7928e-4 |1.8470e-3] 1.7432¢-3
polynomial with
balanced 3.0840e-4|1.7929e-4 |1.9073e-3|1.7233e-3
polynomial with
modal 1.6616e-2|1.7894e-4 (6.1901e-2|1.7532¢-3
piecewise with
balanced 1.5603e-3|1.7927e-4 |5.5619e-3| 1.7090e-3
piecewise with
modal 1.6616e-2|1.7927e-4 (6.1901e-2|1.7540e-3
spline with
balanced 3.0840e-4|1.7929e-4 {1.9073e-3| 1.7233e-3
spline with
modal 1.6616e-2|1.7894e-4 (6.1901e-2|1.7532¢-3
validation |1.8938e-4| 1.7941e-4|1.8481e-3|1.7531e-3

Table: Errors




Results

Results for unitary constraint for design parameters:
resistor R € capacitor C

| |H2 ma><|H2 min |Hoo max|HOO min|
polynomial with
balanced 1.4544e-3|1.7929e-4
polynomial with
modal 4.0447 |2.9460e-4
piecewise with
balanced 7.3779e-3|1.7926e-4
piecewise with

6.8113e-3|1.7171e-3

2.9092e+1|1.8190e-3

3.8669e-2 |1.6939¢-3

modal 3.7449 |2.4148e-4| 8.1928 |1.8347e-3
spline with
balanced 1.4544e-3]1.7929e-4| 6.8113e-3 [1.7171e-3
spline with

modal 4.0447 |2.9460e-4|2.9092e+1|1.8190e-3

Table: Errors when adding the unitary constraint



Results

Plots for design parameters: resistor R & capacitor C
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Figure: Evolution of poles wrt parameters (black circles: poles of the systems
used for modeling, blue crosses: poles of the parametric systems, red squares:
true poles of the validation systems)



Results

Plots for design parameters: resistor R & capacitor C
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Conclusion

Conclusion

Results depend on

@ initial canonical form:
@ modal form suitable for purely mechanical systems
¢ balanced form suitable for systems with high damping

@ interpolation scheme
@ piecewise is cheap, with not so good results
o polynomial may loose accuracy when too many points are used
¢ spline is accurate, but expensive (with Matlab’s spline toolbox)



Thank you!

Questions?
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