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Previous Work

Currently available approaches:

vector fitting (VF) used to construct models for known parameter
values, followed by a parametrization of the numerator and
denominator of the transfer function by linear combinations of basis
functions which are piecewise linear in each parameter [9, 8].

generalization of the Sanathanan-Koerner (SK) iteration (VF is a
particular case of SK) to the parametric case [10, 7]

multivariate formulation of the Orthonormal Vector Fitting
technique [2, 1]

recursive algorithm to compute the parametrized residues of the
multivariate transfer function [3]

generalization of multivariate Vector Fitting which includes
parameter derivatives [4].

are time & memory consuming.
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Parametric modeling from measurements

Σ in descriptor-form: Eẋ(t)=Ax(t) + Bu(t), y(t)=Cx(t)+Du(t),
x(t): state, u(t): input, y(t): corresponding output, E,A∈R

n×n, B∈R
n×p,

C∈R
p×n, D∈R

p×p are constant; [E,A,B,C,D]: a realization of Σ.

tabulated/measurement data (e.g. S-parameters) given wrt
frequencies fi , i=1, . . . , nf , but also wrt one or more parameters as:







fi , αk , S(i ,k) :=







S
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(1)

one parameter α taking values αk , k=1, . . . , nα
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(1)

one parameter α taking values αk , k=1, . . . , nα

Goal: find a parametric system Σ(α) which models (1), st its
transfer function computed for αk , evaluated at j · 2πfi , is close to
S(i ,k):H(αk )(2πjfi )=C(αk )(2πjfi I − A(αk ))−1B(αk )≈S(i ,k), i=1, . . . , nf

Moreover, Σ(α) for other α, should be close to the model one would
obtain from measurements performed for these new values.
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What we propose

Modeling step: Problem: construct LTI models Σ(αk) for some fixed
parameter values αk (rational approximation or system identification -

can be solved in many ways)
Loewner matrix framework & Tangential interpolation [6, 5]

fast, accurate & robust

especially designed for many ports

models of small dimension

Generating Parametric Models: Interpolate between state-space matrices,
after applying a suitable similarity transformation

choice between different interpolation schemes

choice between the canonical form in which systems are brought
initially

constrain the transformation to be close to unitary
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Unitary Constraint
Motivation

Recall: We want to solve

J(T)=α
∥
∥
∥M(0)−T−1M(1)T

∥
∥
∥

2

+β
∥
∥
∥B(0)−T−1B(1)

∥
∥
∥

2

+γ
∥
∥
∥C(0)−C(1)T

∥
∥
∥

2

(2)

but, instead, we solve

J̃(T)=α
∥
∥
∥TM(0)−M(1)T

∥
∥
∥

2

+β
∥
∥
∥TB(0)−B(1)

∥
∥
∥

2

+γ
∥
∥
∥C(0)−C(1)T

∥
∥
∥

2

(3)
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They are different, but by introducing an additional constraint in (3) to
enforce T to be close to unitary (T is unitary if T∗T = TT∗ = I), the
approximation of (2) by (3) makes sense.
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(3)

They are different, but by introducing an additional constraint in (3) to
enforce T to be close to unitary (T is unitary if T∗T = TT∗ = I), the
approximation of (2) by (3) makes sense.
Why?

∥
∥
∥TM(0)−M(1)T

∥
∥
∥

2

=
∥
∥
∥T

−1
(

TM(0)−M(1)T
)∥
∥
∥

2

=
∥
∥
∥M

(0)−T−1M(1)T

∥
∥
∥

2

because the 2-norm is invariant under a unitary change of basis.
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Unitary Constraint

We add an additional term to (3)

Ĵ(T)= α
∥
∥
∥TM(0)−M(1)T

∥
∥
∥

2

+β
∥
∥
∥TB(0)−B(1)

∥
∥
∥

2

+γ
∥
∥
∥C

(0)−C(1)T

∥
∥
∥

2

+δ‖T∗T−I‖
2
,

δ appropriate scaling factor. Forming the Fréchet derivative, we have
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∥
∥TM(0)−M(1)T
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∥
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∥
∥
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∥
∥
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∥
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(0)−C(1)T

∥
∥
∥
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+δ‖T∗T−I‖
2
,

δ appropriate scaling factor. Forming the Fréchet derivative, we have
(

αM(1)∗M(1)+γC(1)∗C(1)
)

T+T
(

αM(0)M(0)∗+βB(0)B(0)∗
)

−α
(

M(1)TM(0)∗+M(1)∗TM(0)
)

+δ 4T(T∗T−I)=βB(1)B(0)∗+γC(1)∗C(0) (4)
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T+T
(

αM(0)M(0)∗+βB(0)B(0)∗
)

−α
(

M(1)TM(0)∗+M(1)∗TM(0)
)

+δ 4T(T∗T−I)=βB(1)B(0)∗+γC(1)∗C(0) (4)

T(T∗T−I) makes (4) nonlinear in T, so it cannot be solved directly

we use a Newton-like procedure on the linearized (4), obtained by
writing T as T0 + ∆T and disregarding higher order terms in ∆T

we start with the initial guess T0 and add, at each step, a correction
∆T which will make the solution T close to being unitary.
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Where to choose the test frequency?

Recall: ∆(α)(s0)=(1−α)H(0)(s0)+αH(1)(s0)−H(α)(s0).

chosen away from the system poles

s0 ∈ R
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Figure: The influence of s0 on the errors
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Stability

Fact: Systems built for known parameter configurations are stable.
Question: Will the system obtained with our procedure also be stable for
any new parameter value?
Answer: Lyapunov stability theory [11].

Definition

Let L be a continous map from R
n to R. It is called a Lyapunov function

for system ẋ(t)=f (x(t)) if:

L is locally positive definite (L(x)>0, 0<‖x‖<r1, for some r1) &

L̇ is locally negative semidefinite (L̇(x)≤0, 0<‖x‖<r2).

Theorem

If ∃ L(x) for system ẋ(t)=f (x(t)), then x=0 is a stable equilibrium

point in the sense of Lyapunov.

If L̇(x)<0, 0<‖x‖<r2, for some r2, then x=0 is an asymptotically

stable equilibrium point.
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Stability

Define a Lyapunov candidate function L(x) = x∗Px, where P is
symmetric positive definite.

L̇(x) = ẋ∗Px + x∗Pẋ = x∗A∗Px + x∗PAx = x∗ (A∗P + PA)
︸ ︷︷ ︸

−Q

x < 0 (5)

if Q≥0, x=0 is a stable equilibrium point.

if Q>0, x=0 is globally asymptotically stable & the system is stable.

this can be expressed as a linear matrix inequality (LMI):
PA+A∗P<0 which always has a solution for A stable.
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Stability

Σ(αk ) are stable, for k=1, . . . , nα, and for a new α,

A(α) =

nαk∑

k=1

wkA
(αk ), B(α) =

nαk∑

k=1

wkB
(αk ) (6)

and similarly for C(α), D(α), with
∑nαk

k=1 wk=1.

Goal: Find a common solution P, ∀k=1, . . . , nα, to the inequalities

A(αk )∗P + PA(αk ) < 0 ⇔ A∗diag(P, . . . ,P) + diag(P, . . . ,P)A < 0 (7)

wkA
(αk )∗P + PwkA

(αk ) < 0 ⇒

nα∑

k=1

wkA
(αk )∗

︸ ︷︷ ︸

A(α)

P + P

nα∑

k=1

wkA
(αk ) < 0

where A=diag(A(α1), . . . ,A(αnα
)).

Solved with Matlab’s LMI toolbox.
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Error Measures

normalized H∞-norm of the error system

H∞ error =
maxi=1...k σ1

(
H(jωi ) − S(i)

)

maxi=1...k σ1

(
S(i)

) ,

normalized H2-norm of the error system

H2 error =

∑k

i=1

∥
∥H(jωi) − S(i)

∥
∥

2

F
∑k

i=1

∥
∥S(i)

∥
∥

2

F

.

where

∥
∥
∥H(jωi ) − S(i)

∥
∥
∥

2

F
=

p
∑

k1=1

p
∑

k2=1

∣
∣
∣Hk1,k2(jωi ) − S

(i)
k1,k2

∣
∣
∣

2

.
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Microstrip lines and an RC pair

Figure: Microstrip lines and an RC pair

Nominal values: R = 4kΩ, C = 0.2pF, w = 80µm, l1 = 3cm, l2 = 2cm,
for width & lengths of the microstrips, and h = 0.3mm, ǫr = 4, for the
dielectric height & permittivity.
This reproduces an interconnect link loaded by a device.
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Design parameter: width w

S-parameters of this 2-port system computed (via a full wave
simulation) for 100 frequencies between 10MHz and 10GHz

15 values of w between 60 and 130µm in steps of 5µm

for better conditioning, frequencies were scaled by 10−6

we use 8 responses for w={60, 70, . . . , 120, 130}µm for modeling

we identified systems of order 20 with D = 0

CPU time for one model was 0.03s on average, and all 8 took 0.25s

LMI (7) was solved for a common P ⇒ all our parametric models
will be stable (no matter how the weights are chosen)

w =90µm was chosen as the reference system

for all remaining systems, T in (3) was applied as a similarity
transformation; this took 0.51s
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Different canonical forms and interpolation schemes

(a) Modal (b) Balanced

Figure: Different canonical forms

(a) Polynomial (b) Piecewise (c) Spline

Figure: Plots for different interpolation schemes
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Results for design parameter: width w

Figure: Values for w

H2 max H2 min H∞ max H∞ min

modeling 1.3309e-4 1.1719e-4 1.2084e-3 1.1030e-3
polynomial with balanced 1.9319e-4 1.1939e-4 1.2491e-3 1.0970e-3
polynomial with modal 7.3754e-3 5.3365e-4 2.2093e-2 1.4944e-3
piecewise with balanced 5.8575e-4 2.4685e-4 1.3116e-3 1.1477e-3
piecewise with modal 5.4896e-3 8.2878e-4 1.3753e-2 2.2075e-3
spline with balanced 1.4855e-4 1.1979e-4 1.2202e-3 1.1022e-3
spline with modal 5.2803e-3 1.5953e-4 1.2509e-2 1.1517e-3

validation 1.3213e-4 1.1860e-4 1.2032e-3 1.1140e-3

Table: Errors
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Results for unitary constraint for design parameter:

width w

H2 max H2 min H∞ max H∞ min

polynomial with
balanced 1.9236e-4 1.1938e-4 1.2483e-3 1.0962e-3

polynomial with
modal 1.3852 1.6774e-1 4.6274 3.6683e-1

piecewise with
balanced 6.4347e-4 3.0443e-4 1.2204e-3 1.0917e-3

piecewise with
modal 7.8957e-1 3.7693e-3 2.4783 1.4491e-2

spline with
balanced 1.4854e-4 1.1956e-4 1.2202e-3 1.1022e-3

spline with
modal 9.0187e-1 6.1852e-2 2.7540 1.1561e-1

Table: Errors when adding the unitary constraint
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Plots for design parameter: width w
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(a) Evolution of poles wrt parameters
(black circles: poles of the systems used for
modeling, blue crosses: poles of the para-
metric systems, red squares: true poles of
the validation systems)
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parametric systems)

Figure: Plots for design parameter: width w
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Results for design parameters: resistor R & capacitor C

H2 max H2 min H∞ max H∞ min

modeling 1.9043e-4 1.7928e-4 1.8470e-3 1.7432e-3
polynomial with

balanced 3.0840e-4 1.7929e-4 1.9073e-3 1.7233e-3
polynomial with

modal 1.6616e-2 1.7894e-4 6.1901e-2 1.7532e-3
piecewise with

balanced 1.5603e-3 1.7927e-4 5.5619e-3 1.7090e-3
piecewise with

modal 1.6616e-2 1.7927e-4 6.1901e-2 1.7540e-3
spline with
balanced 3.0840e-4 1.7929e-4 1.9073e-3 1.7233e-3

spline with
modal 1.6616e-2 1.7894e-4 6.1901e-2 1.7532e-3

validation 1.8938e-4 1.7941e-4 1.8481e-3 1.7531e-3

Table: Errors
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Results for unitary constraint for design parameters:

resistor R & capacitor C

H2 max H2 min H∞ max H∞ min

polynomial with
balanced 1.4544e-3 1.7929e-4 6.8113e-3 1.7171e-3

polynomial with
modal 4.0447 2.9460e-4 2.9092e+1 1.8190e-3

piecewise with
balanced 7.3779e-3 1.7926e-4 3.8669e-2 1.6939e-3

piecewise with
modal 3.7449 2.4148e-4 8.1928 1.8347e-3

spline with
balanced 1.4544e-3 1.7929e-4 6.8113e-3 1.7171e-3

spline with
modal 4.0447 2.9460e-4 2.9092e+1 1.8190e-3

Table: Errors when adding the unitary constraint
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Plots for design parameters: resistor R & capacitor C
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Figure: Evolution of poles wrt parameters (black circles: poles of the systems
used for modeling, blue crosses: poles of the parametric systems, red squares:
true poles of the validation systems)
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Plots for design parameters: resistor R & capacitor C
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(a) Re(S12)
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(b) Angle S21

Figure: Entries for some parameter values (red: systems used for modeling,
blue: parametric systems)
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Conclusion

Results depend on

initial canonical form:

modal form suitable for purely mechanical systems
balanced form suitable for systems with high damping

interpolation scheme

piecewise is cheap, with not so good results
polynomial may loose accuracy when too many points are used
spline is accurate, but expensive (with Matlab’s spline toolbox)
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Thank you!

Questions?
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