Conclusion

Generating Parametric Models from Tabulated Data

Sanda Lefteriu^{1,2} and Jan Mohring¹

¹Fraunhofer ITWM Kaiserslautern, Germany

²ECE Department, Rice University Houston, TX, USA

"Smart Structures" Workshop Dec 15-16, 2009, Paris, France

Motivation	$Problem \ Statement$	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outline						

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

6 Results

Choice of so

Stabili

Results

Conclusion

Motivation

Currently available approaches:

- vector fitting (VF) used to construct models for known parameter values, followed by a parametrization of the numerator and denominator of the transfer function by linear combinations of basis functions which are piecewise linear in each parameter [9, 8].
- generalization of the Sanathanan-Koerner (SK) iteration (VF is a particular case of SK) to the parametric case [10, 7]
- multivariate formulation of the Orthonormal Vector Fitting technique [2, 1]
- recursive algorithm to compute the parametrized residues of the multivariate transfer function [3]
- generalization of multivariate Vector Fitting which includes parameter derivatives [4].

are time & memory consuming.

Motivation	$Problem \ Statement$	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outline						

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

6 Results

Parametric modeling from measurements

Σ in descriptor-form: $E\dot{x}(t) = Ax(t) + Bu(t)$, y(t) = Cx(t) + Du(t), x(t): state, u(t): input, y(t): corresponding output, $E, A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times p}$ are constant; [E, A, B, C, D]: a realization of **Σ**.

• tabulated/measurement data (e.g. S-parameters) given wrt frequencies f_i , $i=1,\ldots,n_f$, but also wrt one or more parameters as:

$$\begin{pmatrix} f_{i}, \alpha_{k}, \ \mathbf{S}^{(i,k)} := \begin{bmatrix} S_{11}^{(i,k)} & \dots & S_{1p}^{(i,k)} \\ \vdots & \vdots & \vdots \\ S_{p1}^{(i,k)} & \dots & S_{pp}^{(i,k)} \end{bmatrix} \end{pmatrix}$$
(1)

• one parameter α taking values α_k , $k=1,\ldots,n_{\alpha}$

Parametric modeling from measurements

Σ in descriptor-form: $E\dot{x}(t) = Ax(t) + Bu(t)$, y(t) = Cx(t) + Du(t), x(t): state, u(t): input, y(t): corresponding output, $E, A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times p}$ are constant; [E, A, B, C, D]: a realization of **Σ**.

• tabulated/measurement data (e.g. S-parameters) given wrt frequencies f_i , $i=1,\ldots,n_f$, but also wrt one or more parameters as:

$$\begin{pmatrix} f_{i}, \alpha_{k}, \ \mathbf{S}^{(i,k)} := \begin{bmatrix} S_{11}^{(i,k)} & \dots & S_{1p}^{(i,k)} \\ \vdots & \vdots & \vdots \\ S_{p1}^{(i,k)} & \dots & S_{pp}^{(i,k)} \end{bmatrix} \end{pmatrix}$$
(1)

- one parameter α taking values α_k , $k=1,\ldots,n_{\alpha}$
- Goal: find a parametric system $\Sigma(\alpha)$ which models (1), st its transfer function computed for α_k , evaluated at $j \cdot 2\pi f_i$, is close to $\mathbf{S}^{(i,k)}$: $\mathbf{H}^{(\alpha_k)}(2\pi j f_i) = \mathbf{C}^{(\alpha_k)}(2\pi j f_i \mathbf{I} - \mathbf{A}^{(\alpha_k)})^{-1} \mathbf{B}^{(\alpha_k)} \approx \mathbf{S}^{(i,k)}, i=1, ..., n_f$
- Moreover, Σ(α) for other α, should be close to the model one would obtain from measurements performed for these new values.

Modeling step: Problem: construct LTI models $\Sigma(\alpha_k)$ for some fixed parameter values α_k (rational approximation or system identification - can be solved in many ways)

Loewner matrix framework & Tangential interpolation [6, 5]

- fast, accurate & robust
- especially designed for many ports
- models of small dimension

Generating Parametric Models: Interpolate between state-space matrices, after applying a suitable similarity transformation

- choice between different interpolation schemes
- choice between the canonical form in which systems are brought initially
- constrain the transformation to be close to unitary

Motivation	Problem Statement	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outline	ç					

Problem Statement

O Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

6 Results

Choice of s₀

Stability R

Conclusion

Unitary Constraint

Recall: We want to solve

$$J(\mathbf{T}) = \alpha \left\| \mathbf{M}^{(0)} - \mathbf{T}^{-1} \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{B}^{(0)} - \mathbf{T}^{-1} \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(2)

but, instead, we solve

$$\tilde{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(3)

Unitary Constraint Motivation

Recall: We want to solve

$$J(\mathbf{T}) = \alpha \left\| \mathbf{M}^{(0)} - \mathbf{T}^{-1} \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{B}^{(0)} - \mathbf{T}^{-1} \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(2)

but, instead, we solve

$$\tilde{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(3)

They are different, but by introducing an additional constraint in (3) to enforce **T** to be close to unitary (**T** is unitary if $T^*T = TT^* = I$), the approximation of (2) by (3) makes sense.

Unitary Constraint Motivation

Recall: We want to solve

$$J(\mathbf{T}) = \alpha \left\| \mathbf{M}^{(0)} - \mathbf{T}^{-1} \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{B}^{(0)} - \mathbf{T}^{-1} \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(2)

but, instead, we solve

$$\tilde{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2}$$
(3)

They are different, but by introducing an additional constraint in (3) to enforce **T** to be close to unitary (**T** is unitary if $T^*T = TT^* = I$), the approximation of (2) by (3) makes sense. Why?

$$\left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} = \left\| \mathbf{T}^{-1} \left(\mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right) \right\|^{2} = \left\| \mathbf{M}^{(0)} - \mathbf{T}^{-1} \mathbf{M}^{(1)} \mathbf{T} \right\|^{2}$$

because the 2-norm is invariant under a unitary change of basis.

Unitary Constraint

We add an additional term to (3)

$$\hat{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^{2} + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^{2} + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^{2} + \delta \left\| \mathbf{T}^{*} \mathbf{T} - \mathbf{I} \right\|^{2},$$

 $\boldsymbol{\delta}$ appropriate scaling factor. Forming the Fréchet derivative, we have

Unitary Constraint

We add an additional term to (3)

$$\hat{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^2 + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^2 + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^2 + \delta \left\| \mathbf{T}^* \mathbf{T} - \mathbf{I} \right\|^2,$$

 δ appropriate scaling factor. Forming the Fréchet derivative, we have

$$\begin{pmatrix} \alpha \mathsf{M}^{(1)*} \mathsf{M}^{(1)} + \gamma \mathsf{C}^{(1)*} \mathsf{C}^{(1)} \end{pmatrix} \mathsf{T} + \mathsf{T} \begin{pmatrix} \alpha \mathsf{M}^{(0)} \mathsf{M}^{(0)*} + \beta \mathsf{B}^{(0)} \mathsf{B}^{(0)*} \end{pmatrix} - \alpha \begin{pmatrix} \mathsf{M}^{(1)} \mathsf{T} \mathsf{M}^{(0)*} + \mathsf{M}^{(1)*} \mathsf{T} \mathsf{M}^{(0)} \end{pmatrix} + \delta 4 \mathsf{T} (\mathsf{T}^* \mathsf{T} - \mathsf{I}) = \beta \mathsf{B}^{(1)} \mathsf{B}^{(0)*} + \gamma \mathsf{C}^{(1)*} \mathsf{C}^{(0)}$$
(4)

Unitary Constraint

We add an additional term to (3)

$$\hat{J}(\mathbf{T}) = \alpha \left\| \mathbf{T} \mathbf{M}^{(0)} - \mathbf{M}^{(1)} \mathbf{T} \right\|^2 + \beta \left\| \mathbf{T} \mathbf{B}^{(0)} - \mathbf{B}^{(1)} \right\|^2 + \gamma \left\| \mathbf{C}^{(0)} - \mathbf{C}^{(1)} \mathbf{T} \right\|^2 + \delta \left\| \mathbf{T}^* \mathbf{T} - \mathbf{I} \right\|^2,$$

$$\begin{split} \delta \text{ appropriate scaling factor. Forming the Fréchet derivative, we have} \\ & \left(\alpha \mathbf{M}^{(1)*} \mathbf{M}^{(1)} + \gamma \mathbf{C}^{(1)*} \mathbf{C}^{(1)} \right) \mathbf{T} + \mathbf{T} \left(\alpha \mathbf{M}^{(0)} \mathbf{M}^{(0)*} + \beta \mathbf{B}^{(0)} \mathbf{B}^{(0)*} \right) \\ & + \delta 4 \mathbf{T} (\mathbf{T}^* \mathbf{T} - \mathbf{I}) = \beta \mathbf{B}^{(1)} \mathbf{B}^{(0)*} + \gamma \mathbf{C}^{(1)*} \mathbf{C}^{(0)} \end{split}$$
(4)

- $T(T^*T-I)$ makes (4) nonlinear in T, so it cannot be solved directly
- we use a Newton-like procedure on the linearized (4), obtained by writing **T** as $T_0 + \Delta T$ and disregarding higher order terms in ΔT
- we start with the initial guess T_0 and add, at each step, a correction ΔT which will make the solution T close to being unitary.

Motivation	Problem Statement	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outline						

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

6 Results

Conclusion

Where to choose the test frequency?

Recall: $\Delta^{(\alpha)}(s_0) = (1-\alpha)\mathbf{H}^{(0)}(s_0) + \alpha \mathbf{H}^{(1)}(s_0) - \mathbf{H}^{(\alpha)}(s_0).$

• chosen away from the system poles

• $s_0 \in \mathbb{R}$

Figure: The influence of s_0 on the errors

Motivation	$Problem \ Statement$	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outling	2					
Outline	2					

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

6 Results

Fact: Systems built for known parameter configurations are stable. Question: Will the system obtained with our procedure also be stable for any new parameter value?

Answer: Lyapunov stability theory [11].

Definition

Let *L* be a continous map from \mathbb{R}^n to \mathbb{R} . It is called a Lyapunov function for system $\dot{\mathbf{x}}(t)=f(\mathbf{x}(t))$ if:

- L is locally positive definite (L(x)>0, $0 < ||\mathbf{x}|| < r_1$, for some r_1) &
- \dot{L} is locally negative semidefinite ($\dot{L}(\mathbf{x}) \leq 0$, $0 < ||\mathbf{x}|| < r_2$).

Theorem

- If ∃ L(x) for system x(t)=f(x(t)), then x=0 is a stable equilibrium point in the sense of Lyapunov.
- If L(x)<0, 0<||x||<r₂, for some r₂, then x=0 is an asymptotically stable equilibrium point.

Motivation Problem Statement Unitary Constraint Choice of s₀ Stability Results Conclusion Stability

Define a Lyapunov candidate function $L(\mathbf{x}) = \mathbf{x}^* \mathbf{P} \mathbf{x}$, where \mathbf{P} is symmetric positive definite.

$$\dot{\mathcal{L}}(\mathbf{x}) = \dot{\mathbf{x}}^* \mathbf{P} \mathbf{x} + \mathbf{x}^* \mathbf{P} \dot{\mathbf{x}} = \mathbf{x}^* \mathbf{A}^* \mathbf{P} \mathbf{x} + \mathbf{x}^* \mathbf{P} \mathbf{A} \mathbf{x} = \mathbf{x}^* \underbrace{(\mathbf{A}^* \mathbf{P} + \mathbf{P} \mathbf{A})}_{-\mathbf{Q}} \mathbf{x} < 0 \quad (5)$$

- if $Q \ge 0$, x=0 is a stable equilibrium point.
- if Q>0, x=0 is globally asymptotically stable & the system is stable.
- this can be expressed as a *linear matrix inequality* (LMI): **PA+A*****P**<**0** which always has a solution for **A** stable.

Motivation Problem Statement Unitary Constraint Choice of s₀ Stability Results Conclusion Stability

$$oldsymbol{\Sigma}(lpha_k)$$
 are stable, for $k{=}1,\ldots,n_lpha$, and for a new $lpha$,

$$\mathbf{A}^{(\alpha)} = \sum_{k=1}^{n_{\alpha_k}} w_k \mathbf{A}^{(\alpha_k)}, \ \mathbf{B}^{(\alpha)} = \sum_{k=1}^{n_{\alpha_k}} w_k \mathbf{B}^{(\alpha_k)}$$
(6)

and similarly for $\mathbf{C}^{(\alpha)}$, $\mathbf{D}^{(\alpha)}$, with $\sum_{k=1}^{n_{\alpha_k}} w_k=1$.

Goal: Find a common solution \mathbf{P} , $\forall k=1, \ldots, n_{\alpha}$, to the inequalities $\mathbf{A}^{(\alpha_k)*}\mathbf{P} + \mathbf{P}\mathbf{A}^{(\alpha_k)} < \mathbf{0} \Leftrightarrow \mathbf{A}^* \operatorname{diag}(\mathbf{P}, \ldots, \mathbf{P}) + \operatorname{diag}(\mathbf{P}, \ldots, \mathbf{P})\mathbf{A} < \mathbf{0}$ (7) $w_k \mathbf{A}^{(\alpha_k)*}\mathbf{P} + \mathbf{P}w_k \mathbf{A}^{(\alpha_k)} < \mathbf{0} \Rightarrow \underbrace{\sum_{k=1}^{n_{\alpha}} w_k \mathbf{A}^{(\alpha_k)*}}_{\mathbf{A}^{(\alpha)}}\mathbf{P} + \mathbf{P}\sum_{k=1}^{n_{\alpha}} w_k \mathbf{A}^{(\alpha_k)} < \mathbf{0}$

where $\mathbf{A} = \text{diag}(\mathbf{A}^{(\alpha_1)}, \dots, \mathbf{A}^{(\alpha_{n_\alpha})}).$

Solved with Matlab's LMI toolbox.

Motivation	Problem Statement	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Outlin						
Qutline	2					

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

 $\bullet\,$ normalized $\mathcal{H}_\infty\text{-norm}$ of the error system

$$\mathcal{H}_{\infty} \text{ error } = \frac{\max_{i=1...k} \sigma_1 \left(\mathbf{H}(j\omega_i) - \mathbf{S}^{(i)} \right)}{\max_{i=1...k} \sigma_1 \left(\mathbf{S}^{(i)} \right)},$$

 $\bullet\,$ normalized $\mathcal{H}_2\text{-norm}$ of the error system

$$\mathcal{H}_2 \text{ error } = \frac{\sum_{i=1}^k \left\| \mathbf{H}(j\omega_i) - \mathbf{S}^{(i)} \right\|_F^2}{\sum_{i=1}^k \left\| \mathbf{S}^{(i)} \right\|_F^2}.$$

where

$$\left\|\mathbf{H}(j\omega_{i})-\mathbf{S}^{(i)}\right\|_{F}^{2}=\sum_{k_{1}=1}^{p}\sum_{k_{2}=1}^{p}\left|\mathbf{H}_{k_{1},k_{2}}(j\omega_{i})-\mathbf{S}^{(i)}_{k_{1},k_{2}}\right|^{2}.$$

Choice of s₀

Results

Microstrip lines and an RC pair

Figure: Microstrip lines and an RC pair

Nominal values: $R = 4k\Omega$, C = 0.2pF, $w = 80\mu m$, $l_1 = 3cm$, $l_2 = 2cm$, for width & lengths of the microstrips, and h = 0.3mm, $\epsilon_r = 4$, for the dielectric height & permittivity.

This reproduces an interconnect link loaded by a device.

Design parameter: width w

- S-parameters of this 2-port system computed (via a full wave simulation) for 100 frequencies between 10MHz and 10GHz
- 15 values of w between 60 and $130\mu m$ in steps of $5\mu m$
- ${\ensuremath{\, \bullet }}$ for better conditioning, frequencies were scaled by 10^{-6}
- we use 8 responses for $w=\{60, 70, \dots, 120, 130\} \mu m$ for modeling
- ${ullet}$ we identified systems of order 20 with ${\bf D}={\bf 0}$
- CPU time for one model was 0.03s on average, and all 8 took 0.25s
- LMI (7) was solved for a common $P \Rightarrow$ all our parametric models will be stable (no matter how the weights are chosen)
- $w = 90 \mu m$ was chosen as the reference system
- for all remaining systems, **T** in (3) was applied as a similarity transformation; this took 0.51s

Different canonical forms and interpolation schemes

Figure: Plots for different interpolation schemes

Results for design parameter: width \boldsymbol{w}

Figure: Values for w

	\mathcal{H}_2 max	\mathcal{H}_2 min	$\mathcal{H}_\infty max$	\mathcal{H}_∞ min
modeling	1.3309e-4	1.1719e-4	1.2084e-3	1.1030e-3
polynomial with balanced	1.9319e-4	1.1939e-4	1.2491e-3	1.0970e-3
polynomial with modal	7.3754e-3	5.3365e-4	2.2093e-2	1.4944e-3
piecewise with balanced	5.8575e-4	2.4685e-4	1.3116e-3	1.1477e-3
piecewise with modal	5.4896e-3	8.2878e-4	1.3753e-2	2.2075e-3
spline with balanced	1.4855e-4	1.1979e-4	1.2202e-3	1.1022e-3
spline with modal	5.2803e-3	1.5953e-4	1.2509e-2	1.1517e-3
validation	1.3213e-4	1.1860e-4	1.2032e-3	1.1140e-3

Table: Errors

Results for unitary constraint for design parameter: width \boldsymbol{w}

	\mathcal{H}_2 max	\mathcal{H}_2 min	$\mathcal{H}_\infty \text{ max}$	$\mathcal{H}_\infty \text{ min }$
polynomial with				
balanced	1.9236e-4	1.1938e-4	1.2483e-3	1.0962e-3
polynomial with				
modal	1.3852	1.6774e-1	4.6274	3.6683e-1
piecewise with				
balanced	6.4347e-4	3.0443e-4	1.2204e-3	1.0917e-3
piecewise with				
modal	7.8957e-1	3.7693e-3	2.4783	1.4491e-2
spline with				
balanced	1.4854e-4	1.1956e-4	1.2202e-3	1.1022e-3
spline with				
modal	9.0187e-1	6.1852e-2	2.7540	1.1561e-1

Table: Errors when adding the unitary constraint

Plots for design parameter: width w

(a) Evolution of poles wrt parameters (b) Singular values of the S-parameter ma-(black circles: poles of the systems used for trices wrt to frequency and parameters modeling, blue crosses: poles of the para- (red: systems used for modeling, blue: metric systems, red squares: true poles of parametric systems) the validation systems)

Figure: Plots for design parameter: width w

Results for design parameters: resistor R & capacitor C

	\mathcal{H}_2 max	\mathcal{H}_2 min	$\mathcal{H}_\infty \text{ max}$	\mathcal{H}_∞ min
modeling	1.9043e-4	1.7928e-4	1.8470e-3	1.7432e-3
polynomial with				
balanced	3.0840e-4	1.7929e-4	1.9073e-3	1.7233e-3
polynomial with				
modal	1.6616e-2	1.7894e-4	6.1901e-2	1.7532e-3
piecewise with				
balanced	1.5603e-3	1.7927e-4	5.5619e-3	1.7090e-3
piecewise with				
modal	1.6616e-2	1.7927e-4	6.1901e-2	1.7540e-3
spline with				
balanced	3.0840e-4	1.7929e-4	1.9073e-3	1.7233e-3
spline with				
modal	1.6616e-2	1.7894e-4	6.1901e-2	1.7532e-3
validation	1.8938e-4	1.7941e-4	1.8481e-3	1.7531e-3

Table: Errors

Results for unitary constraint for design parameters: resistor R & capacitor C

	\mathcal{H}_2 max	\mathcal{H}_2 min	\mathcal{H}_∞ max	$\mathcal{H}_\infty \text{ min }$
polynomial with				
balanced	1.4544e-3	1.7929e-4	6.8113e-3	1.7171e-3
polynomial with				
modal	4.0447	2.9460e-4	2.9092e+1	1.8190e-3
piecewise with				
balanced	7.3779e-3	1.7926e-4	3.8669e-2	1.6939e-3
piecewise with				
modal	3.7449	2.4148e-4	8.1928	1.8347e-3
spline with				
balanced	1.4544e-3	1.7929e-4	6.8113e-3	1.7171e-3
spline with				
modal	4.0447	2.9460e-4	2.9092e+1	1.8190e-3

Table: Errors when adding the unitary constraint

Plots for design parameters: resistor R & capacitor C

Figure: Evolution of poles wrt parameters (black circles: poles of the systems used for modeling, blue crosses: poles of the parametric systems, red squares: true poles of the validation systems)

Plots for design parameters: resistor R & capacitor C

Motivation	Problem Statement	Unitary Constraint	Choice of s ₀	Stability	Results	Conclusion
Quitlin	0					

Problem Statement

3 Unitary Constraint

 \bigcirc Choice of s_0

5 Stability

6 Results

Choice of s₀

Conclusion

Results depend on

- initial canonical form:
 - modal form suitable for purely mechanical systems
 - balanced form suitable for systems with high damping
- interpolation scheme
 - piecewise is cheap, with not so good results
 - polynomial may loose accuracy when too many points are used
 - spline is accurate, but expensive (with Matlab's spline toolbox)

Stabilit

Results

Conclusion

Thank you!

Questions?

Choice of so

Stabil

Results

Conclusion

References

D. Deschrijver and T. Dhaene.

Stability and passivity enforcement of parametric macromodels in time and frequency domain. *IEEE Trans. Microw. Theory Tech.*, 56(11):2435–2441, Nov. 2008.

D. Deschrijver, T. Dhaene, and D. De Zutter.

Robust parametric macromodeling using multivariate orthonormal vector fitting. *IEEE Trans. Microw. Theory Tech.*, 56(7):1661–1667, July 2008.

T. Dhaene and D. Deschrijver.

Stable parametric macromodeling using a recursive implementation of the vector fitting algorithm. IEEE Microw. Wireless Compon. Lett., 19(2):59–61, Feb. 2009.

F. Ferranti, D. Deschrijver, L. Knockaert, and T. Dhaene.

Fast parametric macromodeling of frequency responses using parameter derivatives. *IEEE Microw. Wireless Compon. Lett.*, 18(12):761–763, Dec. 2008.

S. Lefteriu and A. C. Antoulas.

A new approach to modeling multi-port systems from frequency domain data. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 29, Jan. 2010.

A. J. Mayo and A. C. Antoulas.

A framework for the solution of the generalized realization problem. Linear Algebra and Its Applications, 405:634–662, 2007.

P. Triverio, S. Grivet-Talocia, and M. Nakhla.

An improved fitting algorithm for parametric macromodeling from tabulated data. In IEEE Workshop on Signal Propagation on Interconnects, pages 1-4, May 2008.

P. Triverio, S. Grivet-Talocia, and M. Nakhla.

On the construction of uniformly stable multivariate interconnect macromodels. In IEEE Workshop on Signal Propagation on Interconnects, pages 1–4, May 2009.

P. Triverio, S. Grivet-Talocia, and M. Nakhla.