

Séminaire mécanique du 04 juillet 2001 - Yves Surrel - Page 1

Méthodes optiques de mesure de champs cinématiques. Quelques applications à la mécanique des matériaux et des structures

Yves Surrel, chaire d'instrumentation

BNM-INM

Conservatoire national des arts et métiers

1 Introduction

- Les méthodes optiques de mesures de champ connaissent une grande effervescence depuis 10 ans.
 - Diminution du coût des ordinateurs
 - Diminution du coût de l'acquisition vidéo
 - Augmentation des puissances de traitement
 - Caméras CCD, transmission analogique et numérique (IEEE 1394)
 - Renouveau de méthodes « classiques » grâce au décalage de phase
- Parmi leurs avantages on peut citer :
 - Sans contact
 - Rapide
 - Des milliers de points de mesure
 - Possibilité d'utiliser des champs hétérogènes pour les essais mécaniques
- Enjeu important dans le domaine de la mesure de forme

2 Détection de phase

Les méthodes optiques fournissent des figures de franges (holographie, interferometrie, moiré, speckle) ou de lignes (méthode de la grille). Une image est l'enregistrement d'une intensité :

 $I(\phi) = A[1 + \gamma \cos(\phi)]$

Le paramètre recherché est toujours la phase.

La détection de phase est le calcul du champ de phase à partir du champ d'intensité.

2.1 De l'intensité à la phase

Figure 1: Image d'intensité et champ de phase modulo 2π correspondant

2.2 Décalage de phase

Échantillonnage du signal et détermination de la meilleure sinusoïde

Figure 2: Intensité échantillonnée en fonction du décalage

2.3 Stratégies pour le décalage de phase

- 2.3.1 Décalage de phase temporel
- (N images nécessaires)
 - Pixel identique sur plusieurs images
 - Une mesure indépendante par pixel (résolution : 1 pixel)

2.3.2 Extraction spatiale de phase

- (1 image nécessaire)
 - 1. Décalage de phase spatial
 - Pixels contigus sur plusieurs images
 - Résolution spatiale : N pixels
- 2. Phase du signal analytique ; Résolution spatiale : ?

2.4 Décalage temporel de phase : déflectométrie

Figure 3: Images différentes décalées en phase ; pièce en matériau composite (mat de verre/résine)

2.5 Décalage spatial de phase : interférométrie

Figure 4: Traitement complet à partir d'une image ; cale étalon (Michelson réglé en coin d'air)

3 Techniques de mesure

3.1 Mesure de déplacements

- Un motif de traits parallèles (grille) est déposé sur l'objet.
- On mesure une composante du champ de déplacement (deux si on a deux directions orthogonales des traits).
- Hypothèse : la grille va suivre les déplacements du substrat (id. jauges électriques).
- Si le décalage de phase spatial est utilisé, le matériel est très simple (caméra, carte d'acquisition)
- C'est une méthode géométrique (pas interférométrique)

3.1.1 Mesure lors d'un essai de traction

Figure 5: Mesure de déplacements avec dépliement temporel de phase

1.2 Essai hors axes sur matériau composite

Figure 6: Essai hors axe sur composite unidirectionnel

3.1.3 Résultats

Figure 7: Déplacements axiaux

3.1.4 Résultats

Figure 8: Étude de la sensibilité de la mesure

3.1.5 Essai d'IOSIPESCU

Figure 9: Déplacements verticaux lors d'un essai d'IOSIPESCU

3.2 Exemple d'utilisation de champs hétérogènes

3.2.1 Principe

(Travaux de M. Grédiac)

L'équilibre global d'une structure peut être écrit en utilisant le principe des travaux virtuels:

$$\int_V \sigma_{ij} \varepsilon_{ij}^* dV = \int_{\partial V} T_i u_i^* dS$$

Valide pour tout ensemble de déplacements/déformations virtuels compatibles avec les conditions aux limites.

Loi de l'élasticité plane (indices contractés x, y et s) pour un matériau orthotrope :

$$\left(egin{array}{c} \sigma_x \ \sigma_y \ \sigma_s \end{array}
ight) = \left[egin{array}{c} Q_{xx} & Q_{xy} & 0 \ Q_{xy} & Q_{yy} & 0 \ 0 & 0 & Q_{ss} \end{array}
ight] \left(egin{array}{c} arepsilon_x \ arepsilon_y \ arepsilon_s \end{array}
ight)$$

Pour chaque champ virtuel, on obtient une équation linéaire en Q_{ij} .

Figure 10: Spécimen en té

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 17

Figure 11: Champs virtuels

Le système suivant est obtenu :

$$\begin{bmatrix} 0 & \int_{S_4} \varepsilon_y dS & \int_{S_4} \varepsilon_x dS & 0 \\ 0 & 0 & 0 & \int_{S_1} \varepsilon_s dS \\ \int_{S_1} 2y\varepsilon_x dS & 0 & \int_{S_1} 2y\varepsilon_y dS & 0 \\ \int_{S_4} y(y+b)\varepsilon_x dS & 0 & \int_{S_4} y(y+b)\varepsilon_y dS & \int_{S_4} x(2y+b)\varepsilon_s dS \end{bmatrix} \begin{cases} Q_{xx} \\ Q_{yy} \\ Q_{xy} \\ Q_{xy} \end{cases}$$

$$= \begin{cases} \frac{Fb}{e} \\ \frac{Fa}{2e} \\ \frac{Fa^2}{2e} \\ 0 \end{cases}$$

3.2.2 Résultats

Figure 12: Comparison du déplacement u_x modélisé par EF (à gauche) et obtenu expérimentalement (à droite)

Figure 13: Comparison du déplacement u_y modélisé par EF (à gauche) et obtenu expérimentalement (à droite)

Figure 14: Comparison de la déformation ε_{xx} modélisée par EF (à gauche) et obtenue expérimentalement (à droite)

Figure 15: Comparison de la déformation ε_{yy} modélisée par EF (à gauche) et obtenue expérimentalement (à droite)

Figure 16: Comparison du cisaillement ε_{ss} modélisé par EF (à gauche) et obtenu expérimentalement (à droite)

3.3 Mesures de déformations : interférométrie différentielle sur réseau

3.3.1 Présentation

Dédoublement de l'image par un dispositif adéquat (ex: interféromètre de MICHELSON) ; les rayons qui interfèrent proviennent de deux points voisins, distants de δr . Insensible aux vibrations !

Figure 17: Déplacement différentiel de deux points voisins.

La variation de phase des franges d'interférence est : $\phi = \mathbf{g} \cdot \delta \mathbf{u}$

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 25

échantillon réseau diaphragme miroir $R \rightarrow r$ L1 réseau M2 12 U \$ dépoli M3 caméraournant D Interféromètre de MICHELSON réglé en coin d'air , filtre spatial L3 laser acquisition et traitement

Figure 18: Dédoublement de l'image par un interféromètre de MICHELSON

3.3.3 Application à la méthode du trou incrémental

Pour évaluer les contraintes résiduelles dans de l'aluminium grenaillé. Diamètre du trou : $\Phi = 2 \text{ mm.}$

Figure 19: Composante ε_{xx} (profondeur du trou : 400 μ m et 500 μ m)

Mesure du cisaillement :

Figure 20: Composante ε_{xy} (profondeur du trou : 500 μ m)

Mesure des pentes. Elles peuvent être obtenues de deux manières indépendantes

Figure 21: À gauche : champ des pentes ; à droite : différence entre les deux mesures indépendantes (écart-type 25 μ rad)

3.4 Mesure de pentes : déflectométrie

Figure 22: Montage de déflectométrie, utilisant une fente. S : source ponctuelle, BS : lame semi-réfléchissante, FL : lentille de champ, IL : lentille d'imagerie

Avec grille et décalage de phase :

Figure 23: Déflectométrie : remplacement de la fente par une grille

3.4.1 Pièce en germanium usinée diamant

Figure 24: Champ de courbures sur pièce de 85 mm usinée à l'outil diamant

3.5 Déflectométrie : système ONDULO

Permet de mesurer un champ de pentes

Figure 25: Montage de déflectométrie

3.5.1 Défauts : champ de courbures

Les courbures mettent en évidence les défauts de formes.

Figure 26: La courbure γ est l'inverse du rayon de courbure *R*

3.5.2 Résultat sur une aile de voiture

Figure 27: Image vidéo en haut, champ de courbures en bas

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 35

3.5.3 Résultat sur portière

Figure 28: Champ de courbures

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 36

Figure 29: « Oreilles de Mickey » au voisinage de la poignée de portière

4 Résultat sur pièce en mat de verre/résine

Les courbures mettent en évidence les *défauts de formes*. Dérivée du champ de phase, lié aux pentes.

Figure 30: Défauts de courbures sur pièce de capot automobile

3.6 Profilométrie par projection de lumière structurée

3.6.1 Présentation

Figure 31: Montage pour la profilométrie par projection de franges

Figure 32: Transcodage de l'information z en information u_x

On a dans le cas le plus simple (éclairage collimaté) :

 $u_x = z \tan(\theta)$

Figure 33: Étude d'une main (projection de franges d'interférence)

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 41

Figure 34: Représentation 3D

Figure 35: Résultats de profilométrie sur une sphère de 200 mm

Séminaire mécanique du 04 juillet 2001 — Yves Surrel — Page 43

Figure 36: Pièce mécanique de 25 mm de diamètre et 8 mm de hauteur

4 Conclusions

- Les progrès récents sur l'évaluation numérique de phase ont bouleversé ces dernières années un grand nombre de techniques optiques de mesures.
- La richesse des informations recueillies permet de repenser l'approche de l'essai mécanique (essais hétérogènes).
- Il faut faire attention à la grandeur mesurée : déplacement, déformation, pente ... Les informations obtenues peuvent être complémentaires.