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Aim of this Work

m To develop and implement a new
approach to passively control
vibration and shock in flexible
structures.

m This technique is based on passively
channeling vibrational energy into
nonlinear energy sinks (NESs), where
it is confined and dissipated.
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Related Technologies

m Current methods
Damping
Linear vibration absorbers
Active and semi-active control
Redesign of structure

m Proposed method
Nonlinear energy sink (NES)
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Originality of Our Approach

m NESs are capable of passively absorbing and
dissipating broadband (transient) disturbances

m NESs can nonlinearly interact with a series of
structural modes, extracting a significant
amount of energy from each before engaging the
next

m In contrast to previous work on nonlinear
vibration absorbers, general transient, strongly
nonlinear responses are considered. The
techniques developed directly address the
transient problem as well as the steady state.
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Practicality of the NES

m Modular and, hence, can be connected to
existing structures with minimal modification

m Lightweight and of simple design

m Passive and does not require power to
operate

m Inexpensive, especially when compared to
structural redesign

m Although they are local attachments, NESs
can affect the global structural dynamics

'r-. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Introduction

m Energy pumping is the passive, one-way,
rapid and irreversible transfer of energy
from a vibrating main structure to an
attached nonlinear energy sink

m The main structure can be either linear or
nonlinear, while the coupling with the NES
IS assumed to be linear and weak

m The NES possesses essential
(nonlinearizable) stiffness nonlinearity
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Earlx Eerriments

m A system where the NES possesses no damper
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Earlx Eerriments

m A damper has been added to the NES
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Basic Configuration

e Linear primary structure
e Nonlinear energy sink
e Weak linear coupling

F(t)
NES

Weak
Coupling
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Theoretical Basis

m Consider an (N+1) DOF linear main structure coupled to an
essentially nonlinear NES. In terms of modal coordinates
the structural response at the point of attachment O is
expressed in the form

N
Yo(t) =D {3 (1)
k

=0

where denotes the element at position O of the k-th
mass-nathhalized eigenvector of the uncoupled structure
(with €=0), and a,(t) represents the k-th modal amplitude
of the structure.
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Theoretical Basis

m Then, the equations of motion of the system are
expressed as

N
V(t) + Cv3(t) + eav(t) + {v - Z ¢gk>ak(t)) _

k=0

N
am(t)+m;am(t)+exam<t)+8{2 067062 () - ¢(m)V(t)j:
k=0

m=0,1,...,N

m Consider the nonlinear resonance interactions between
the NES and an individual mode, say the zero-th one, of
the main structure
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Theoretical Basis: NNMs

m Dynamics of the unforced, undamped system

=

V(t) + OV (t) +¢ (v(t) - o§ap(t) - > ¢gk>ak(t)] =
k=1
N
éo(t)+(o(2)a0(t)+s( %ap(t) - oVt + > 6% (O)ak(t)j
k=1

N
ém<t>+wéam(t)+s(2 06052 (t) - ¢<m>v<t)j=
k=0

m=1,...,,N
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Theoretical Basis: NNMs

The physical NNM oscillations of the NES and the point of
attachment of the structure are approximated as

V(t) = 2 sin (gt + 7, (1) + O(c2)) + O(e)

)

V() = 6© 20 sin (ot +7o(t) + O(e%)) + O(e)
W

: . € A,
v =70 % 20 |: (oy d)(O) i|
0

with frequency

: & 0)° oA
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Theoretical Basis

Schematically, we synthesize local results, using the
physical energy R as the independent variable.

Frequency
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Exgerimental sttem: SDOF + NES

Our first experiments were on a 2-DOF system: an SDOF
primary structure connected to an NES

Energy Flow
>
Vit v(t)
—
F(t} £ —
9 sh,
ghu, Cu?
IZLJE o
Linear Nonlinear

Sub system Attachment
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Experimental System: SDOF + NES

e Two “cars” ride on a 1-D air track

e Applied force and response acceleration are measured
directly

_ Dashpot
Leaf Springs Connector

\

Force
Transducer

Accelerometer

Primary
Mass Accelerometer

Force
Transducer

Air Track
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Experimental System: SDOF + NES
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Exgerimental sttem: SDOF + NES

m Linear subsystem

M =0.834kg, K =993N/m, &1=0.129Nsec/m

@, = 35.63 rad/sec ¢ =23x107

m Nonlinear energy sink

m=0.393kg, £=114N/m, &c=0.454Nsec/m
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Exgerimental sttem

eNonlinear spring

Fitted polynomial has 1st and 3
order terms.
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Measured Data

e Typical “strong” force pulse

Force, 1201
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Simulated Response

0.01 Primary Displacement
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Measured Response & Simulation

e Primary and NES 30

Primary Acceleration

accelerations 20
e Good agreement o
of amplitude |

e Good agreement |
of “slow” 20|
response |

e Distinct transient 20 |
resonance |

captures | M MMM 1 MMM v o b

e Results were o
repeatable |
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Measure of Energy Pumping

eTotal energy input

[
E(t)= [F(0)j(z)dr
0

eEnergy dissipated in sink dashpot

4
ENgs(t) = E.((:C )_“Vz(f)df
1 \"1MMax O

e We compute the normalized dissipation in the NES as a
function of time
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Measure of Energy Pumping

eAll energy input occurs in a few msec,

ep2
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Measure of Energy Pumping
eDissipation in NES

1 Normalized
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Variation with Level of Forcing

e The existence of a threshold input energy to produce

pumping is demonstrated by comparing the results of
weak and strong forcing

e Stronger forcing does not always produce more
efficient energy pumping

1 .
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Experimental System: 2DOF + NES

We next consider a 3-DOF system

¥, () ¥, () it
—

—
i1l du S0 —
# shu,
— [
3
ghu, FM, Cu
NES
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Linear main system

and seek to demonstrate transient resonance of the
NES with both modes of the primary structure
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Resonance CaEture Cascade

Frequency

004
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Exgerimental sttem: 2DOF + NES

eAdditional primary mass
eSame energy sink
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Experimental System: 2DOF + NES
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EerrimentaI sttem: 2DOF + NES
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Measured Sink Response

m Pumping from mode 1 only
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Measured Sink Response

m A brief cascade
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Measured Sink Response

m A sustained cascade (example 1)
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Measured Sink Response

m A sustained cascade (example 2)
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Conclusions

e Experimental results confirm the existence of nonlinear
energy pumping, occurring at a single fast frequency
approximately equal to the eigenfrequency of the linear
subsystem

e Good agreement between theoretical and experimental
results was observed in spite of the strongly nonlinear
and transient nature of the dynamics

e Previous analytical and simulation results on the input
energy threshold and the variation of efficiency with
increasing forcing have been verified

e Evidence of energy pumping cascades from a 2-DOF
primary system to a SDOF sink has been found
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