Characterisation and simulation of porous foams Some recent results

ROYAL INSTITUTE OF TECHNOLOGY Rémi Guastavino Peter Göransson

Background

Most porous materials are non-isotropic in elasticity/viscoelasticity/viscoacoustic properties

To derive adequate simulation models, these properties must be known with a relevant precision

Work has been on-going since the BRAIN project ended in the mid-90's.

Fibrous wools are modelled with a high degree of accuracy Open cell porous foams are still an open point

Contents of lecture

Review results for fibrous wools

Review our early work on porous foams

Recent results (experimental/numerical) on foams

Constitutive modelling

 $\boldsymbol{\sigma}_{f} = \hat{\mathbf{H}}\boldsymbol{\varepsilon}_{f}$ $\boldsymbol{\sigma}_{f}^{T} = \begin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{12} & \sigma_{13} & \sigma_{23} \end{bmatrix}$ $\hat{\mathbf{H}} = \mathbf{H} + d_{\lambda}(s)\mathbf{H}_{\lambda} + d_{G}(s)\mathbf{H}_{G}$

$$d_{\lambda}(s) = \sum_{l=1}^{N_a} \frac{\left(3\varphi_l^2 + 4\varphi_l\mu_l\right)}{\delta_l(s+\beta_l)} s$$
$$d_G(s) = \sum_{l=1}^{N_a} \frac{2\mu_l^2}{\delta_l(s+\beta_l)} s$$

 $s = \pm i \omega$

$$\mathbf{H}^{-1} = \begin{bmatrix} a & d & g & 0 & 0 & 0 \\ & a & g & 0 & 0 & 0 \\ & & b & 0 & 0 & 0 \\ & & & s & 0 & 0 \\ & & & s & 0 & 0 \\ & & & & t & 0 \\ & & & & & t \end{bmatrix}$$

$$a = \frac{1}{E_1}; b = \frac{1}{E_2}; d = \frac{-V_1}{E_1}; g = \frac{-V_2}{E_2}; t = \frac{1}{G_2}; s = \frac{1}{G_1}$$

Fibrous wools

Layered, within each layer randomly dispersed fibres

Elasticity assumed transversely isotropic

Poisson's ratios are ~zero, simplifying the process of finding the various moduli.

From static tests (example of fibrous wool used in aircraft):

Moduli	E_1	E_2	G_1	G_2
[Pa]	225	17200	1200	13700

Fibrous wools, cont'd

Viscoelasticity assumed isotropic (!) Uniform motion of the loading plate

From dynamic tests in vacuum chamber:

Moduli	eta_1	$\mu_{ m l}$	$\delta_{_{1}}$	$arphi_1$
	6.65	15.4	1.0	0
	Hz	Ра	Ра	Ра

Note: Only one term needed + only in shear modulus

Equivalent loss factor ~10%

Fibrous wools, cont'd

Results

Open cell foams (PU)

Foaming process induces a directional micro-structure

Properties vary throughout a real foam block

Degree and influence of non-isotropic elasticity?

"Naive" approach, use an isotropic elasticity model, but assume a variation in the in-plane direction.

E = 75 kPa; v=0.40

Moduli	eta_l	μ_l	δ_l	$arphi_l$
<i>l=1</i>	1.	71.30	1.0	71.95
	Hz	Ра	Ра	Ра
<i>l=2</i>	1.E4	396.7	1.0	0
	Hz	Ра	Ра	Ра

Open cell foams (PU), cont'd

Dynamic experimental Setup

Open cell foams (ME), cont'd

Non-uniform motion of supporting plate

Microstructure Melamine

Cell orientation determines anisotropy

m

Finding the elastic constants

Combined experimental/numerical

Inverse estimation through a least squares fit

First problem:

How to measure accurate deformations/forces?

1st static experimental setup /Load

2,5% deformation

Relaxation curve

Measuring small forces, weakness of load cell significant problem

2nd static test set-up CCD cameras and speckle photogrammetry

Used deformation level = 2.5 % strain

to avoid nonlinearity

CCD measurement

Before deformation

During deformation

Typical result & smoothing

Rotating table

Constant deformation

Rotating table

Collect data for 4 faces without dismantling

Face matching

Face matching after deformation in x displacement (in mm)

Edge effect X 100 BÜ -6 -5.8 -6.6 -5.4 [mm] -4.11 -5.84 -6.2 -5.75 -5.50 -5.25 -5.00 -4.75 -4.50 -4.25 -5 4.8 -4.6 4.4 4.2

Artificially introduced discontinuity

Valid zone of focus

Out of picture plane displacement

Inverse estimation of elastic properties

Elastic material parameters

- In general anisotropic requires 21 constants.
- Here a general orthotropic model is assumed.
- This requires 9 independent constants and 3 angles of rotation (assuming body and material coordinate systems are different).

A total of ~600 points to fit a model of 12 parameters

F.E Simulation & experimental

Elastic material parameters

Possible (?) Hooke's matrix for Melamine

 7.0734241e+05
 4.1745677e+05
 6.7939378e+05
 2.8622851e+04
 -2.2577011e+05
 -1.8548001e+05

 6.6604861e+05
 6.3696404e+05
 8.7890445e+04
 -1.3654600e+05
 -1.7325758e+05

 1.7495901e+06
 2.2418971e+05
 -4.5269967e+05
 -5.0137319e+05

 2.8930366e+05
 -1.6297201e+04
 -5.1279601e+04

 3.7323774e+05
 2.5116848e+05

 3.5726698e+05

$$\boldsymbol{\sigma}_{f}^{T} = \begin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{12} & \sigma_{13} & \sigma_{23} \end{bmatrix}$$

Conclusion

- Inverse estimation requires very high quality experimental data
- •A methodology for precise characterization is under development
- •Aiming at finding a static anisotropic elastic and fluid model of the foam
- •Precise dynamic and acoustic model is under development

Presentation Outline

- Numerical design of automotive multilayer trim for low-mid frequencies
- Higher order FE solutions to Biot's equations with convergent results
- Lightweight layered trim components with solid, porous, viscoelastic materials
- Convergence for single & multilayer
- Influence of boundary conditions

Numerical Simulation Summary Convergence of 3D Porous FE Solutions (u-U)

Multilayer Trim Configuration

Visco-elastic barrier

Visco-elastic PU foam

Multilayer Trim Configuration, cont'd

Evaluate convergence for increasingly complex

- layering
- boundary conditions
- Excitation through an acoustic wave
- Meshing:
 - One element over the surface
 - Two elements over the foam thickness
 - One element over the steel and barrier thicknesses

Sequence of convergence assessments @ 500 Hz

- Visco-elastic layer (rel. fast convergence)
- Visco-elastic foam
- Visco-elastic foam + barrier on steel plate

 L_2 -norm $uu^*d\Gamma$

Fixed &

Simply supported

Convergence in L₂-norm (u-p)

Visco-elastic foam

Visco-elastic foam, simply supported

Convergence in deformation (u-p)

Convergence in pressure (u-p)

Convergence in L₂-norm (u-p)

Visco-elastic foam + barrier on steel, clamped

Steel+Visco-elastic foam + Barrier, clamped **Convergence in deformation (u-p)**

Steel+Visco-elastic foam + Barrier, clamped

Deformations and Internal Pressures (u-p)

Transmitted pressure

Concluding Remarks

- Boundary conditions tends to slow down convergence for a single layer
- No substantial change in the condition number for multilayer configurations
- Pressure solution converges in general at lower p-levels (~2-3 lower)
- To reach an accuracy better than 1% of the surface average we need:
 - for a single foam layer p=6
 for a multilayer sandwich p=7

- To reach an accuracy better than 10% of point wise quantities we need:

 - for a single foam layer p=6-7
 for a multilayer sandwich p=5-6

N.B. @ 500 Hz

Convergence in deformation (u-p)

Visco-elastic foam on steel plate, clamped

Hierarchical basis functions

$$\xi_{1},\xi_{2},\xi_{3}) = \sum_{l_{1}=1}^{p_{1}+2} \sum_{l_{2}=1}^{p_{2}+2} \sum_{l_{3}=1}^{p_{3}+2} c_{\{l_{1},l_{2},l_{3}\}} \phi_{\{l_{1},l_{2},l_{3}\}}(\xi_{1},\xi_{2},\xi_{3})$$

$$\xi_{1},\xi_{2},\xi_{3} \in [-1,1]$$

$$\phi_{\{l_{1},l_{2},l_{3}\}}(\xi_{1},\xi_{2},\xi_{3}) = f_{l_{1}}(\xi_{1})f_{l_{2}}(\xi_{2})f_{l_{3}}(\xi_{3})$$
(2)

$$\int \frac{1}{2}(1-\chi) \qquad \qquad l=1$$

$$f_l(\chi) \stackrel{\text{def}}{=} \begin{cases} \frac{1}{2}(1+\chi) & l=2\\ \inf(l/2) & \sum_{s=0}^{l+1/2} \frac{(-1)^s (2l-2s-5)!!}{2^s s! (l-2s-1)!} \chi^{l-2s-1} & l \ge 3. \end{cases}$$

Convergence in L₂-norm

