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ABSTRACT

The purpose of the Finite Element Model adjustment is to control and improve
the representative model of a real structure using a preliminary finite element modell-
ing and dynamic data, obtained experimentally.

Over the last ten years, this problem has aroused a great interest in universities
and industries and a European group has been conducted by ONERA to test the
different methods through specific benchmarks.

In this paper, we present some studies improving the F.E. model by means of
experimental modal results, and more precisely we describe two approaches:

— the updating method developed at ONERA, that is based on the variational
expression of the dynamic equilibrium equations; the dynamic reaction forces due to
the stiffness matrix and mass matrix imperfections of the finite element model are used
to localize the error, using experimental frequencies and corresponding displacements;

— the approach developed by the LMT laboratory in Cachan assumes that the
modelling errors are localized where the errors on the constitutive relation are the
largest.
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INTRODUCTION

The updating of structural models from experimen-
tal data raises problems in the framework of a new
computation/experimental dialog which is now
appearing. The problems are inverse and the difficul-
ties are multiple: theoretical, mathematical and
mechanical as well as experimental and numerical.
Although general approaches exist for describing and
solving these problems, they in no way dispense with
the need for considering aspects related to physics [2].
It is necessary to carefully choose the objective
functions to be optimized and the experimental meas-
urements to be used. This second aspect is perfectly
illustrated by the model correction methods.

Qualification of structures, in particular space
structures, by dynamic behavior increasingly involves
numerical simulations in replacement of excessively
costly tests. It is then necessary to have a representa-
tive model of reality. The most widely used math-
ematical model is that of free vibrations of a complex
structure discretized by finite elements. Tests supply
the modal characteristics (generally the first natural
frequencies and the associated eigenmodes, incom-
pletely known). The problem is then to minimize the
difference between computation and experiment and
improve the F.E. model.

Many adjustment strategies have been proposed:

— methods such as those of Baruch [3], Berman
[4], Chen [5], Caesar [6], Ewins [7, 8], Link [9] who
directly construct the corrected mass and stiffness
matrices from the measured modal characteristics and
the orthogonality relations;

— methods using sensitivity techniques: Wei [10],
Collins [11], Lallemant [12], Dascotte [13] express the
eigenvalues as a function of the design parameters by
a Taylor series expansion. The correction coefficients
appear directly from these methods before the elemen-
tary matrices. The most commonly used strategy is
the least squares method (Bayesian estimate);

— Cottin [14], Niedbal, Luber, Klusowski [27] and
Nash [28] attempt to improve the stiffness, mass and
damping matrices by minimizing the errors on the
inputs (experimental excitation forces-excitation for-
ces calculated from the model and experimental
displacements) or the errors on the outputs (exper-
imental displacements-displacements calculated from
the model and experimental excitation forces);

— Boutin, Petian [15] minimize a ‘“real structure-
finite element model” error using the frequencies and
modal deformations restricted to only the measured
degrees of freedom verifying the dynamic equilibrium
equations. The optimization problem amounts to a

problem without constraints using a penalty method; .
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— the methods developed by O’Callahan [16] and
Leuridan [17] use the experimental eigenforms to
transform the stiffness and mass matrices of the finite
element model in the mode base (Craig-Bampton
form). Each term with a known experimental value
can be expressed using a sum of elementary energy
terms premultiplied by the correction coefficients.
The solution is computed by the least squares method
on the energy products for the measured modes.

The approach adopted at ONERA [18, 19, 20] is
based on calculation of the residues in the variational
expression of the equilibrium equation, and uses the
experimental modes to solve linear static problems.
The difference between the model and measurements
results in nonzero reaction forces on the degrees of
freedom of the structure. The calculation of the
correction parameters is a quadratic optimization
problem without constraints each iteration. This
strategy was adopted in [21].

The approach suggested by LMT [22, 23, 24] and
initiated with Aérospatiale [26] is based on the con-
cept of error in the constitutive equation as described
in [27]. The measured eigenvalues are considered
exact but weighting is applied to the eigenmodes.
They are considered simultaneously without imposing
any order between them. The problem of localization
is linear with a reasonable size and correction is a
nonlinear problem with a dimension equal to the
number of parameters to be corrected.

All these methods are evolutionary, i.e. they adapt
continuously to the progress of experimentation and

- the numerical aspect.

LOCALIZATION
OF MODEL ERRORS

DYNAMIC REACTION FORCES APPROACH

One of the major difficulties to be solved in the
adjustment problem is that the data available are
incomplete, the experimental displacements being
known in only a few measurements points, much
smaller in number than the number of degrees of
freedom of the model. Different methods were used
to construct a complete “‘experimental” vector.
ONERA developed a methodology which proceeds
by solving three consecutive static problems.




The first static problem, stated below in terms of
local equilibrium equations, is solved:

Let Q be a structure with boundary 8Q=3Q, (U 6Q,
where 6Q; is the part of the boundary with known
displacements (given boundary conditions and exper-
imental displacements) and 8Q, is the complementary
part. It is attempted to solve

dive+i,,,pu=0

in Q where o is the stress field.
u is the displacement field
p is the density

with the boundary conditions

u=0 on 8Q)

u=U,, on 8Q;  where Q=580 5Q

xp
which leads to the solution

u=U; in QU3dQ,

and

on=R#0 on 3Qf (R reaction forces).

For a discretized medium, the variational expres-
_sion of these equations leads to the following static
problem (1) after discretization by finite elements,
defining the matrix operator Tj:

n P
Tk=KO_xexpkMO+ Z BjKj_kexka Y: M.
1 1

K, (M,) is the stiffness (mass) matrix of the initial
model;

K;(M,) is the elementary stiffness (mass) matrix of
element j (i) (with dimension extended to that of Kj;

B;(vy) is the relative error of the stiffness (mass)
characteristics of element j (i);

Aexpr 18 the experimental eigenvalue of mode k;

Uepr is the known part of the experimental dis-
placement;

U, is the unknown displacement;

B;, v; can affect a group of elements.

Below, corrections concerning the stiffness matrix
and the mass matrix are considered.

For a specific value B, v; (B;=v,;=0 initially) and
for each mode denoted k:

I:Tkll Uk
Tkll

o E
Tk22 Uexpk Rk

)

LN

where zero reaction forces -are imposed on all the
unknown DOFs. Solving (1) supplies U, and R,.

In order to obtain nonzero reaction forces on all
the degrees of freedom of the structure, the two fol-
lowing static problems are solved in succession:

[Tkll Tkl 2:| |:Uk] — I:Rllc] (2)
Ti21 Ty LU, 0
which supplies U, and R;, and finally,
I:Tkll TklZ:”: Ullc, ]:l:Rllc:I (3)
TkZ 1 Tk22 Uexpk Rl’c’

which allows displacement U, to be completed and
the reaction forces to be obtained on all the DOFs
of the structure.

Remark: Calculation of the complete displacement
is possible if submatrices T, and T,,, are invertible,
which is the case for low frequency problems with
regularly distributed measured DOFs.

The error function is defined by

Supy “ Ry H

= 4
max; (supy “ Ry, “) @

where || R, || is the norm of the reaction force in node
i for mode k.

THE DISTRIBUTION OF THIS FUNCTION ON
THE STRUCTURE DEFINES THE SUBSTRUC-
TURES TO BE CORRECTED

Error function g; can be used to extract the nodes
E,, with minimum error during the first iteration such
that for g;<e given, the completed displacement Dy
in these nodes can be considered exact. For subse-
quent iterations, the complete displacement can be
computed only on nodes E,, identified as those with
maximum error by imposing values D extracted
from Dy on the common boundary I' between E,,
and E, (Figs. | and 2). The reaction forces of E,,
on E, must not be included in computation of the
cost function. This technique, which consists of
examining a local region in detail from the displace-
ments known on the boundary of the substructure
yields independent problems of a small size.

APPROACH BY THE ERROR IN CONSTITU-
TIVE EQUATION CONCEPT

Let us consider a domain Q with boundary 9Q,
with two complementary parts of the boundary, dQ,
and 09),, such that the displacements are imposed on
0Q, and the loads on the complementary part, 0Q,.
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Substructure 1 Error function — Static substructuring

Substructure 2

Fig. 1. — Error function. Static substructuring.

% Exp. displ. — Completed displ.
£%=
° Exp. displ.
Boundary I Vector No.
Node 1 2 3 4 5
u meas. 0 0 0 0 0
33 v meas. 0 0 0 0 0
0 0.07 1.8 0.2 0.13 0.2
u 0.7 0.0002 0.006 0.3 0.002
I 39 v 0.003 0.02 0.003 0.02 0.009
62 0.02 0.006 0.08 0.004 0.005
u 0 0.0002 0.004 0 0
38 v 0.003 0.02 0.002 0.003 0.02
0. 0.02 0.14 0.06 0.02 0.002
u 0.0006 0.0003 0.01 0.002 0.001
56 v 0 0.009 0 0.0001 0.0001
6, 0.0008 4.4 0.0003 0.002 0.05
u-meas. 0 0 0 0 0
I 72 v meas. 0 0 0 0 0
0. 0.0001 0.04 0.002 0.006 0.02
u meas. 0 0 0 0 0
78 v meas. 0 .0 0 . 0 0
0, 0.002 1.9 0.05 0.2 0.4

Fig. 2. — Static substructuring.
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Fig. 3. — Adjustment of the model (LMT laboratory).

It is assumed that the exact eigenvalue v is known.
The associated modes are the solution of the problem:

Find a displacement field v and a stress field o
such that:

the pair v, o is admissible, verifying (5) and (6)

v|0Q;=0  and
Vv*elV

v regular (5)

(6)

Q

f Tr (c& (v%)) dg=xj p vv* dQ
Q

V={v, v|0Q,=0, vregular } p is the density and
such that:

(v, o) verify the constitutive equation
c=Kge(v)

where K is Hooke’s tensor and ¢ is the strain field.

Quantities K and p are those of the finite element
model.

Let us consider the experimental eigenvalue A, of
mode k. A pair (g, v) of admissible fields [verifying
(5) and (6)] can be associated with it to minimize the
error in the constitutive equation:

(v, 0) > ||lo—Ke()|?

=J Tr((c—Ke () K~ ! (6 — Kg(v))) dQ.

If A, is the exact eigenvalue for the (X, p) model,
the error in the constitutive equation || g— K& (y)|| is
Zero.

This last problem can be rewritten by associating
a displacement field u C.A. (kinematically admissible)
which is a solution of the elastic problem with the
stress o S.A. (statically admissible):

- f Tr((Ke () —o)e (v*))dQ=0,
Vo*eV
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" Fig. 4. — Adjustment of the model (LMT laboratory).

We then associate the error in the constitutive equa-
tion ||u—v||* with (v, u), where (v, u) verify (5) and
the following equilibrium equation:

ueVl, veV, Vo*elV
JTr(Kg(u)g(v*))dQ=7_»kJ‘ p vo* dQ.
Q Q

After discretization, this last problem is solved and
the nodal values of u and v are also denoted (&, v) to
simplify‘the notations. .

Let ITv, be the column of measured displacements
associated with the measured eigenvalue A,. We then
associate with it the pair (u, ») such that (u, ) mini-
mizes the error in the constitutive equation:

B

EZ (u, v)=||u—o|*+ = ITo—TIo |2 ()

IT is the given projection operator on the measured

degrees of freedom and ||| ||| is a norm which is
described below. ’

For each given experimental mode k, the problem

is therefore:
Find (z, u) C.A. at “0” minimizing:

EZ (u, v)=(u—v)' K(u—0)
+ o (o= Ty K, (o= Tlz) (§)
_, '
with the constraint Ku=2x, M v.
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K, M are the symmetric stiffness and mass matrices
respectively of the model with dimension #: the num-
ber of degrees of freedom of the model.

K, is, for instance, the Guyan reduction of I on
the measured degrees of freedom.

Il - -]|| then represents twice the strain energy given
by the initial model in the static problem where the
displacement field is obliged to take on values ITv in
the measurement points. '

r is a scalar expressing the level of confidence in
the quality of the modes measured, ¥« 1 for unreliable
experimental values and close to 1 otherwise. r=0.5
is a common value.

(8) characterizes the distance between the predic-
tions of the first model and the experimental mode
k(A Ivy). If E, (4, v) is zero, the experimental
mode &k (A, I1v,) is perfectly represented by the theor-
etical model.

ror all the g modes measured, the quality of predic-
tion of the theoretical model is defined by

E,=( T B x>)”2
k=1

For a given experimental mode k, (A, I[1v,), the
measure of the error in the constitutive equation is
then:

e
il
I
|
flex
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Fig. 5. — Adjustment of the model (LMT laboratory).

and in its relative form
lu—2|?

12 ulP+ 2%

When the structure considered is divided.into sub-
structures (s), g7 is the sum of the contributions of
each substructure:

2=
k

lien

lu-vlt,
2(ulP+ 2P

2 —
g2=Y gk  avec gp=
N

On all the available ¢ modes measured, two indica-
tors I'? and n? are defined for each substructure (s)

q
2 2
1qs - Z &,

k=1

q

nZ= 3

k=1

le—vlie,
1212 lié+ 26

These indicators correspond to the relative errors
made on the substructures.” Indicators n? are thus

used to localize poorly modeled regions and indica-
tors I'2 characterize the intensity of the corrections
required (Figs. 3 to 6). ’

PARAMETRIC CORRECTION

DYNAMIC REACTION FORCES APPROACH

Let Dy =[U" U,,,.] be the completed displacement
and o'=[B;, By, . . ., Bu Y15 Y25 - - -» ¥, the vector of
the m correction parameters (m=n+ p) corresponding
to the identified substructures.

If a is a solution:

Fo()+ F()a=0 ©)

where

FO (a)t = [((KO - 7"expl MO) Dl)ta .
((KO - )\‘expz MO) D2)t’ o ((KO - }\‘equ MO) Dq)t]

which is the column vector of the nodal forces corre-
sponding to the ¢ measured modes, F () is the matrix
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Last localization step
g total=0.0113

Fig. 6. — Adjustment of the model (LMT laboratory).

of elementary nodal forces for all the ¢ modes meas-
ured. It consists of subcolumns of the type:

K; Dy, —Aexpr M; Dy, =1, mi=1,p k=1, g).
System (9) is linear with variable coefficients.
By application of the fixed point theorem, we

attempt to find «,,, in iteration p+ 1 such that:

Fy(o,)+ F(a,) o, =0. (10)

At iteration p, Fy () + F(a,) o, = R(a,) yielding

F(a,) Ao, + R(o,)=0 where Aa,=a,,; —a
(11) is generally overdetermined and is solved in the
sense of the least squares. _

Setting €,= F(a,) Ao, + R(a,), and solving (10) in
the sense of the least squares amounts to minimizing
function f,=¢} ¢, each iteration, which leads to solv-
ing (F*F),Aa,= —(F'R), where (F'F) represents an
approximation of the Hessian of f,. We thus arrive
at a problem of optimization without constraints
(solved by a Gauss-Newton method) when R is non-
zero on all the DOFs of the structure.

ERROR IN THE CONSTITUTIVE EQUATION
APPROACH

It is considered that the structure is defined by a
number of structural parameters peP. Matrices K

Rech. Aérosp. — n° 1991-5

L

and M are therefore a function of p. The correction
problem is written:
Find pe P such that K (p) and M (p) minimize:

q

E*(p)= ).

k=1

r
flu-slr+ i

for ¢ measured modes.

This nonlinear problem is solved by a conjugate
gradient algorithm

More  specifically, we set K=K+AK,
M=M+AM and, in the case of the test examples
discussed:

L L
AK= Y C Ap, and AM= Y D Ap,

c=1 c=1

where L is the number of structural parameters to be
modified. We then solve the following problem:

Find (, v, Ap.), ce(1, L) ke(1, g) such that they
minimize

q
F(w, vy, Ap)= Z ”uk_"’k“2
k=1
r
+ : ”Hvk—I—IQk”2 (12)

where

Kuy=MMoy, (13)
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15m
" 5m 5m 5m >
- — — >
5 7 10 13 16 19 22 25 28 33 37 40 43 46 49 52 57 61 64 67 70 73
- —— - -
2T 24 51 T 7297 7>
: 21 45 69
1 18 42 66 77
3mm
2 978
4 76
- - a8

6 8

1114 17 20 23 26 30 35 38 41 44 47 50 54 59 62 65 68 71 74

Left edge clamped

M Measurement points (two degrees of freedom x, y measured)

Young’'s modulus E=0.751011Pa Vertical elements $=0.610-2m?2
Density p = 2800 kg m2 Horizontal elements $=0.4102m2
Inertia 1=0.756 10-' m4 Diagonal elements $=0.3102m?2
Fig. 7.
Roal Caloulated with u—v= A, v where 4, is a function of Ap,.
relative relative This last problem can thus be reduced to the follow-
perturbations " perturbations ing nonlinear problem:
Stiffness Mass Stiffness Mass Find Ap,, ce(1, L) such that they minimize:
Elements é?f ﬁ _AE ﬂ H(Apc)zF(Qka APC)
57 _; 5 g _Z 5 g which is a problem with L scalar variables.
7-10 -0.9 0 -0.9 0
6-9 -0.9 0 -0.9 0
912 00 0 S 0 GARTEUR EXAMPLE [1]
12-15 —-0.9 0 -0.9 0
6-8 —-0.9 0 —-0.9 0 Let us consider the truss structure discretized by
8-11 -0.9 0 -0.9 0 finite elements: bar and beam bending in the plane.
1-14 101 0 10105 0 The structure is clamped at one end and free at
1417 ) 0 " 0 the other (Fig. 7). The mechanical properties were
selected so as to obtain overall modal deformations.
17-20 +1 0 +1 0 . .
The behavior of the real structure was numerically
47-50 0 + 0 + simulated by disturbing the sections and the inertias,
50-55 0 +1 0 +1 thereby causing stiffness and mass errors on the
55-60 0 +1 0 +1 model. The first five frequencies of the disturbed
65-68 +1 0 +1 0 structure and part of the degrees of freedom were
68-71 1 0 1081 0 given. The following upper and lower limits were set
for the relative errors: [—0.9, + 1] for section inertias
71-74 0 0 +0.09 0 . . . >
[—0.5, + 1] for bar sections. Figures 8 and 9 illustrate

Fig. 8. — Truss clamped at one end and free at the other.
The solution in v, leads to:

q

F(gks Apc)= Z

k=1

! r \? r ~1
=2 ((——) (Krnyk)t(AiKAk+*K)
k=1 1—r 1—r

((1 d )(H ) I, T (g, 2,)

-r

x(K,nyk)wL(lL)HyktK,Hyk)
-r

the udpating results for the two methods developed
above.

CONCLUSION

The strategies adopted for solving the inverse
problem, -i. e. the problem of updating models from
vibration tests, are differentiated by the degree of
integration of the physical context.  Generally,

Rech. Aérosp. — n° 1991-5




18

Fig. 9. — GARTEUR: Second test case.
Vibrations in the plane of an undamped disturbed truss, clamped and free.

the more mechanical the approach, the more efficient
the reconstruction of the data. The completely
automatic approaches proposed amount to mini-
mizing a cost function that has several solutions,
certain of which are not compatible with the
physics of the problem. It is not easy to sort the
solutions taking into account the quality of the
experimental results, especially since the quality is
itself difficult to evaluate. It is not reasonable to
introduce all the parametric variables of the problem
in a functional to be minimized. Although solving
an optimization problem of a large size is not always
an obstacle with today’s computers, it remains true
that the problem is poorly stated as regards evalu-
ation of the quality of the measurements. The
approach we recommend consists of identifying the
poorly modeled regions and then correcting the model
taking the physical context into account.

Manuscript submitted July 9, 1990; accepted June 5,
1991.

REFERENCES

[1] GARTEUR-AG11. — Group for aeronautical research and
technology in Europe, action group on parametric updat-
ing of finite element models using experimental simula-.
tions.

[2] TIKHONOV A. and ARSENINE V. — Méthodes de résolu-
tion de problémes mal posés, Edition Mir, Moscou,
(1974).

[3] BARUCH M. — Optimal correction for mass matrix and
stiffness matrix using measuring modes, A.l.A.A. 82-4265,

- (1982). ’

[4] BERMAN A. and FLANNELLY:O. — Theory of incomplete

.. models of dynamic structures, AIAA journal, vol. 9/8,

. (1971), p. 1481-1487.

Rech. Aérosp. — n° 1991-5

[6] CHEN J. C. and GARBA J. A. — Analytical model impro-
vement using modal test results, AIAA Paper 79-0831,
vol. 18, n° 6, Avril 1989.

[6] CAESAR B. — Correlation and update of dynamic math-
ematical models, 4th F.E. world congress, Interlaken,
Septembre 1984.

[71 HE J. and EWINS D. J. — Analytical stiffness matrix
correction using measured vibration modes, Int. journ. ana-
lytical & experimental modal analysis, vol. 1, n°3,
juillet 1986.

[8] EWINS D. J. and HE J. — A review of the error matrix

- method for structural dynamic modes comparison, Proc.
Int. Conf. on Spacecraft Structures Testing, ESA-SP-289,
(1988).

[9] LINK M., WEILEND M. and BARRAGAN J. M. — Direct
physical matrix identification as compared to phase reson-
ance testing. An assessment based on practical applica-
tion, Proc., IMAC, London, (1987). ,

[10] WE! J. J. C. and ALLEMANG R. J. — Correction of finite
element model via selected physical parameters, Proceed-
ings, IMAC, p. 1231-1238, Las Vegas, (1989).

[11] COLLINS J. D., HART G. C., HASSELMAN J. K. and
KENNEDY B. — Statical identification of structures, AIAA
journal, vol. 12/2, (1974), p. 185-190. )

[12] ZHANG W., LALLEMENT G., FILLOD R. and PIRANDA
J. — Parametric identification of conservative self-adjoint
structures, Proc. Int. Conf. on Spacecraft Structures Test-
ing, ESA-SP-289, (1988).

[13] DASCOTTE E. and VANHONECKER P. — Development
of an automatic mathematical model/ updating program,
Proc., IMAC, p. 1183-1190, London, (1987).

[14] COTTIN N:, FELGENHAUER H. P. and NATKE H. G. — On
the parameter identification of elastomechanical systems
using input and output residuals, Ingenieur Archiv. 54,
p. 378-387, Spring Verlag, (1984). e

[15] BOUTIN P. and PETIAU M. — /dentification automatique
de structures dynamiques sur modéles d‘éléments finis,
AMDY/BA, Saint-Cloud, Doc. DGT n° 23351, aoat 1983.

[16] O'CALLAHAN J. C. and CHOU C. M. — Localization of
test/analysis structural model error, AIAA Paper 89-1244-
CP, p. 748-752, (1989). :

[17] LEURIDAN.J. M., BROWN D. L. and ALLEMANG R. J.
— Direct "system identification of mechanical structures
with application to modal analysis, AIAA Paper 82-0767,
p. 548-556.



[18] BERGER H., BARTHE L. and OHAYON R., Parametric-

updating of a finite element model from experimental
modal characteristics, Proc. European Forum on Aeroelas-
ticity and Structural Dynamics, 1989, Aachan April 1989.

[19] BERGER H., CHAQUIN J. P. and OHAYON R. — Finite
element model adjustment using experimental data, Proc.
IMAC-2, Orlando, Florida, (1984).

[20] BERGER H., BARTHE L. and OHAYON R. — Recalage
d’'un modéle par éléments finis a partir de données
expérimentales du type vibratoire. Concept de localisation,
R.T. DRET n° 7/3313 RYO070R., mai 1987.

[21] FISSETTE E., STAVRINIDIS C. and IBRAHIM S. — Error
location and updating of analytical dynamic models using
a force balance method, Proceedings, IMAC, (1988),
p. 1063-1070.

[22] LADEVEZE P. and REYNIER M. — Recalage de modélisa-
tion par éléments finis en dynamique, Rapport Interne du
Laboratoire de Meécanique et Technologie, n° 97,
avril 1989, LMT, 61, avenue du Président-Wilson,
94235 Cachan.

[23] LADEVEZE P. and REYNIER M. — A /ocalization method
of stiffness errors for the adjustment of F.E. models, Pro-

19

ceedings, 12th ASME Mechanical Vibration and Noise
Conference, Montreal, septembre 1989.

[24] REYNIER M. — Sur le contréle des modélisations
par €léments finis : Recalage & partir d’essais dyna-
miques, Thése de Doctorat d'Université Paris-VI,
17 décembre 1990, Laboratoire de Mécanique et Tech-
nologie, 61, avenue du Président-Wilson, 94235 Cachan.

[25] LADEVEZE P., Recalage de modélisations des structures
complexes, Note technique n° 33.11.01.4. Aérospatiale,
Les Mureaux, (1983).

[26] LADEVEZE P., COFFIGNAL G. and PELLE J. P. — Accu-
racy of elastoplastic and dynamic analysis in Accuracy
estimates and adaptative refinements in finite element
computation, Chap. 11, p.181-203, Babuska, Zienkie-
wicz, Gago, Oliveira, Editor J. Wiley, (1986).

[27] NIEDBAL N., KLUSOWSKI E. and LUBER W. — Updating
of F.E. models by means of normal modes, Proc. ESA-
Congress, ESA-SP-289, (1988).

[28] NASH M. — An approach to the correction of finite ele-
ment and model test studies, CADCAM ans Vibration
Measurements, (1988).

Rech. Aérosp. — n° 1991-5



