Advanced (composite) Beam Theory and 1D-3D-computations Central solution and end effects

> Rached El Fatmi LGC-Enit, Tunis-Manar University, Tunisia

> > LMSSC, CNAM, Paris, 2013

Composite beam

Composite section

LGC-Enit ABT

Aerocraft industry

LGC-Enit ABT

Image: Image:

< ∃ >

_ र ≣ ≯

Blades

LGC-Enit ABT

イロン イロン イヨン イヨン

Sport equipment / competition

Mechanical industry, automotive industry

< ∃ →

- ∢ ≣ ▶

Civil Engineering

'≣ ▶

Pultrusion \rightarrow composite profiles

Can Stock Photo - csp4372091

(Elastic and linearized solution)

Objective

- Good description of the structural 1D behavior
- 3D stress field in each material,

... in the major **interior** part of the beam

• Common beam slenderness, ... and even relatively small

Two difficulties

- **Couplings** extension-bending-twist composite anisotropic section
- Edge effects / Boundary conditions

Elasting couplings

- Composite section=[shape and materials] not separable
- The edge effects are **not always confined** close to the **ends** and can dominate the behavior of the beam

- the 3D/1D-connections: where and how ?
- which beam theory will support the 1D area ?

3D

• the 3D/1D-connections: where and how ?

• which beam theory will support the 1D area ?

A General (composite) beam theory

able to **catch a significant part** of the edge effects \rightarrow size(1D-area) \gg size(3D-area) !!

Outline

•The beam theory

1 Mechanical characteristics of the section: MCS

- $2 \rightarrow \text{Beam theory}$
 - Displacement model
 - Equations & Numerical developments
 - 1D-3D connections

•Applications: Significant examples

Outline

•The beam theory

Mechanical characteristics of the section: MCS

- $2 \rightarrow \text{Beam theory}$
 - Displacement model
 - Equations & Numerical developments
 - 1D-3D connections
- •Applications: Significant examples

Bending-torsion of a Short cantilever open composite profile

Outline

2

•The beam theory

Mechanical characteristics of the section: MCS

- ightarrow Beam theory
 - Displacement model
 - Equations & Numerical developments
 - 1D-3D connections
- •Applications: Significant examples

.... the correspondent **Beam Theory**

- ▲ 문 ▶ - ▲ 문 ▶ - - 문

Displacement model

.... the correspondent | Beam Theory

Displacement model

.... the correspondent Beam Theory

Beam Theory: two steps

Beam Theory: two steps

Key point: 3D SV-solution

3D SV-solution: reference solution for beam

- \approx the central solution (when $L \gg d$)
- contains a lot of information on the mechanical behavior of the section
- homg. isotropic \rightarrow composite anisotropic (lesan, 76)

(extended to composite section Eisan(1976))

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

SV-Problem

(extended to composite section Eisan(1976))

3D SV'solution exactly satisfies (1) **but** (2)

$$\int_{S_0} \boldsymbol{\sigma}(-\boldsymbol{z}) \, dS = \int_{S_0} \boldsymbol{H}_0 \, dS \qquad \int_{S_0} \boldsymbol{G} \boldsymbol{M} \wedge \, \boldsymbol{\sigma}(-\boldsymbol{z}) \, dS = \int_{S_0} \boldsymbol{G} \boldsymbol{M} \wedge \boldsymbol{H}_0 \, dS$$
$$\int_{S_L} \boldsymbol{\sigma}(\boldsymbol{z}) \, dS = \int_{S_L} \boldsymbol{H}_L \, dS \qquad \int_{S_L} \boldsymbol{G} \boldsymbol{M} \wedge \, \boldsymbol{\sigma}(\boldsymbol{z}) \, dS = \int_{S_L} \boldsymbol{G} \boldsymbol{M} \wedge \boldsymbol{H}_L \, dS$$

SV-Solution

(extended to composite section Eisan(1976))

$$\left\{egin{array}{rcl} R'&=&0\ M'+z\wedge R&=&0\ \left[\begin{array}{cc} \gamma=u'+z\wedge \omega\ \chi=\omega'\end{array}
ight]&=&\mathbf{\Lambda}\left[\begin{array}{cc} R\ M\end{array}
ight]\ +&\left[ext{B. C.}
ight]_{0,L} \end{array}
ight.$$

SV-Solution

(extended to composite section Eisan(1976))

shape and materials

$$\begin{array}{rcl}
\overset{H_{\theta}}{\overbrace{}} & \overbrace{z \longrightarrow H_{\theta}}^{y} & \overbrace{g \longrightarrow G}^{y} & \overbrace{z \longrightarrow SV-solution}^{y} \\
 & \sigma^{sv}(x,y,z) &= \sum_{i=1}^{6} F_{i}(z) \ \sigma^{i}(x,y) & \left(F_{i} \middle| \begin{array}{c} R = [T_{x}, T_{y}, N] \\ M = [M_{x}, M_{y}, M_{t}] \end{array} \right) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) + \omega(z) \wedge GM + \sum_{i=1}^{6} F_{i}(z) U^{i}(x,y) \\
 & \xi^{sv}(x,y,z) &= u(z) + \omega(z) + \omega$$

$$H_{\theta} \underbrace{\qquad \qquad } \overset{z}{\longrightarrow} \underbrace{\qquad \qquad } \overset{f}{\longrightarrow} \overset{f}{\longrightarrow} \underbrace{\qquad \qquad } \overset{f}{\longrightarrow} \underbrace{\qquad \qquad \qquad } \overset{f}{\longrightarrow} \underbrace{\qquad \qquad } \overset{f}{\longrightarrow} \overset{f}$$

$$\boldsymbol{\sigma}^{sv}(x,y,z) = \sum_{i=1}^{6} F_i(z) \, \boldsymbol{\sigma}^i(x,y) + \mathbf{f} \, \boldsymbol{\sigma}(x,y)$$
$$\boldsymbol{\xi}^{sv}(x,y,z) = \boldsymbol{u}(z) + \boldsymbol{\omega}(z) \wedge \boldsymbol{G}\boldsymbol{M} + \sum_{i=1}^{6} F_i(z) \begin{bmatrix} \boldsymbol{\Pi}^i(x,y) \\ \boldsymbol{\phi}^i(x,y) \end{bmatrix} + \mathbf{f} \, \boldsymbol{D}(x,y)$$

sectional charact. \rightarrow $\sigma; D$ / shape, mater. and load. Distorsion = in-plane part of D

SV-Problem

 $\left(\text{extended to comp. section and lat. loading Eisan(76)} \right)$

$$H_{\theta} \underbrace{\underbrace{\qquad}}_{\mathbf{X}} \underbrace{\mathbf{X}}_{\mathbf{X}} \underbrace{\mathbf{X}} \underbrace$$

Åν.

$$\boldsymbol{\sigma}^{sv}(x,y,z) = \sum_{i=1}^{6} F_i(z) \ \boldsymbol{\sigma}^i(x,y) + \mathbf{f} \ \boldsymbol{\sigma}(x,y)$$

SV-Problem

R. El

$$\boldsymbol{\xi}^{sv}(x,y,z) = \boldsymbol{u}(z) + \boldsymbol{\omega}(z) \wedge \boldsymbol{G}\boldsymbol{M} + \sum_{i=1}^{6} F_i(z) \begin{bmatrix} \boldsymbol{\Pi}^i(x,y) \\ \phi^i(x,y) \end{bmatrix} + \mathbf{f} \boldsymbol{D}(x,y)$$

sectional charact. \rightarrow $\sigma; D$ / shape, mater. and load. Distorsion = in-plane part of D

$$f^{j} \rightarrow D^{j} \ (j = 1, ...n)$$

Characteristics of a Composite Section \leftarrow CSection

- Mechanical Characteristics of a Composite Section
 - Λ (6x6)-matrix of the 1D behavior
 - σ^i sectional stresses
 - $\mathbf{\Pi}^i, \phi^i$ Poisson's effects and warpings
 - D^j Distorsions

The numerical Method

- El Fatmi & Zenzri, 2002 (Computers & Structures)
- solving, by 2D FEM, a set of elastic pbs defined on the section

(6) pbs to deduce
$$\Lambda$$
, σ^i, Π^i, ϕ^i
(k) pbs to deduce σ^j, D^j , (j=1,...,k)

Characteristics of a Composite Section $\leftarrow CS$ ection

- Mechanical Characteristics of a Composite Section
 - (6x6)-matrix of the 1D behavior

 - σ^i sectional stresses Π^i, ϕ^i Poisson's effects and warpings
 - Distorsions

The numerical Method

- El Fatmi & Zenzri, 2002 (Computers & Structures)
- solving, by 2D FEM, a set of elastic pbs defined on the section

(6) pbs to deduce
$$\Lambda$$
, σ^i, Π^i, ϕ^i
(k) pbs to deduce σ^j, D^j , (j=1,...,k)

Usual characteristics

Sectional stresses

Sectional stresses

Poisson's effects

Sectional warpings

(some) Sectional distortions

Arbitrary composite section

Arbitrary composite section

Several elastic couplings !

R. El Fatmi, composites

Laminated $[0,90,-45,60]_s$ section

- Γ, the 1D structural behavior
- σ^i : Two critical points
 - The shear through the layers
 - Interlaminar stresses / free edge effect)
- \mathcal{M}^k : the sectional modes

Laminated [0,90,-45,30]_s section

(6×6) -matrix 1D stiffness

CSection

$\Gamma = 10^9 \times$	6.1657	0.0000	-1.8607	0.0000	0.0000	0.0000
	0.0000	4.0000	0.0000	0.0000	0.0000	0.0000
	-1.8607	0.0000	38.3708	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	3.7226	0.0000	0.0645
	0.0000	0.0000	0.0000	0.0000	3.0925	0.0000
	0.0000	0.0000	0.0000	0.0645	0.0000	0.5722

Elastic couplings: extension-bending and twist-bending

Laminated [0,90,-45,30]_s section

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Laminated [0,90,-45,30]_s section

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Laminated [0,90,-45,30]_s section

Laminated [0,90,-45,30]_s section

Poisson's Effects

Warpings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$\fboxleft \textbf{1} \textbf{Composite section} \rightarrow \fboxleft \textbf{CS} \textbf{CS}$

The beam theory

R. El Fatn

 $\fbox{1} \textbf{Composite section} \rightarrow \fbox{CSection}$

$$ig[oldsymbol{M}^j, \phi^i ig]$$

that contains the physics of the section

SV-sectional modes

2 **ABT** (Advanced Beam Theory)= A Higher order beam theory built on **SV-sectional results**

 \rightarrow

$$\xi(u, \omega, \eta, \alpha) = \underbrace{u(z) + \omega(z) \land GM}_{enrichment} + \underbrace{\eta_i(z)\phi^i(x, y) + \alpha_k(z)M^k(x, y)}_{enrichment}$$
.... the correspondent Beam Theory

Displacement model ... \rightarrow ... Beam theory

El Fatmi & Ghazouani Composite structures, 2011

• Displacement model $\boldsymbol{\xi} = \boldsymbol{\xi}(\boldsymbol{u}, \boldsymbol{\omega}, \eta_i, \alpha_j) \Longrightarrow \ldots$ BT equations

+ 1D behavior (Constitutive law)

• Beam-Problem. \rightarrow 1D-Sol. $(\boldsymbol{u}^{e}, \boldsymbol{\omega}^{e}, \boldsymbol{\eta}^{e}_{i}, \boldsymbol{\alpha}^{e}_{j})$ $\rightarrow \boldsymbol{\xi}^{e} = \boldsymbol{\xi}(\boldsymbol{u}^{e}, \boldsymbol{\omega}^{e}, \boldsymbol{\eta}^{e}_{i}, \boldsymbol{\alpha}^{e}_{j}) \rightarrow \boldsymbol{\sigma}^{1D \rightarrow 3D} = \mathbf{K} \boldsymbol{\varepsilon}(\boldsymbol{\xi}^{e})$

Loading and Boundary conditions

- 1D BC: Several DOF: $[u_x, u_y, u_z]; [\omega_x, \omega_y, \omega_z]; [\alpha_i]_1^k; [\eta_j]_1^6$
- 3D loading \rightarrow generalized 1D external forces ?

•Numerical **1D-FEM** developement $\dots \rightarrow \dots$ $\forall q^i \approx$ Hermite

1D-3D connections for the 1D-3D-FEM computation

•3D-1D-connection to ensure the continuity of the displacement

$$\boldsymbol{\xi}^{3D}(x, y, z_0) = \boldsymbol{\xi}^{ABT}(\boldsymbol{u}(z_0), \boldsymbol{\omega}(z_0), \boldsymbol{\alpha}_{\boldsymbol{j}}(z_0), \boldsymbol{\eta}_{\boldsymbol{i}}(z_0))$$

•1D-3D-FEM computation of the whole problem !

Loads and Boundary Conditions

3D deformed beam

Sectional stresses

A critical case ... for a beam theory

Bending-torsion of a Short cantilever open composite profile

LGC-Enit ABT

Loading with a zero resultants (force and moment)

Loading with a zero resultants (force and moment)

《曰》《聞》《臣》《臣》

• Key point : the sectional modes

- contains the physics of the section
- but need first numerical 2D-FEM computations

• Advanced Beam Theory (ABT)

- the number of modes is as important as we want
- 2 levels of computation
 - 1D : for the 1D behavior and the 3D central solution
 - 3D-1D : to get more information on edge effects

• Key point : the sectional modes

- contains the physics of the section
- but need first numerical 2D-FEM computations

• Advanced Beam Theory (ABT)

- the number of modes is as important as we want
- 2 levels of computation
 - 1D : for the 1D behavior and the 3D $\ensuremath{\textit{central solution}}$
 - 3D-1D : to get more information on edge effects
- •ABT needs Numerical tools to be used
 - CSection to computes the sectional characteristics
 - **CB**eam to generate ABT and compute the static problem

Conclusion

• Key point : the sectional modes

- contains the physics of the section
- but need first numerical 2D-FEM computations

• Advanced Beam Theory (ABT)

- the number of modes is as important as we want
- 2 levels of computation
 - 1D : for the 1D behavior and the 3D central solution
 - 3D-1D : to get more information on edge effects
- •ABT needs Numerical tools to be used
 - CSection to computes the sectional characteristics
 - **CB**eam to generate ABT and compute the static problem

• *dynamic* and *buckling* under development

Professional use

• Lots of applications

Academic use: help to ...

• show/understand the 1D-3D behavior of hom./comp. beams

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- discuss beam theories: SV, Timoshenko, Vlasov, ...
- introduce composite structure
- analyse tests / composite materials (Lab.)