AEROELASTIC CONTROL OF NON-ROTATING AND
ROTATING WINGS USING THE DYNAMIC
STIFFNESS MODULATION PRINCIPLE

Fred Nitzsche
Department of Mechanical and Aerospace Engineering
Carleton University, Ottawa, Canada

Ie Cnam

uuuuuuuuuuuuuuuu ImSSC

Laboratoire de Mécanique des Structures et des Systemes Couplés

Seminar: December 11, 2013



Adaptive or Active Pitch Link @craf’r

(APL) N,

Excitation
Force, F(t)

C v Rotor blade mass, m.

NO | )

Active
material
mass, M

Adaptive Pitch
Link

13-12-11 CNAM 2013



craf;

i+l

Smart Spring parametric excitation rO
reshapes vibration spectrum
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APL evolution along the SHARCS @‘ craff
project "/

2nd Generation (2006)

1st Generation (2003)

3 Generation (2010)
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APL rotating tests
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Open-loop control performance ‘b”aﬂ
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Open-loop control performance ‘b”aﬂ

(APL transmitted axial load)

Best result so far — 100 % reduction at 2/rev with little effect at 1/rev:
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Lotortcraft

Conclusions (1) N

O Smart Spring concept was proved in experimental
rotating blade tests

13-12-11

Open-loop parametric stiffness modulation of the blade
torsion showed almost 100% vibration reduction for
axial transmitted load in one case!

Repeatable results were obtained

No degradation on the Smart Spring performance was
noticed after more than 10 hours of tests
Indirect-active device (low power requirement)

Reshapes the transmitted load vibration spectrum

o Simulations indicate that closed-loop control can be designhed to
attenuate target frequencies - such as 4/rev in a 4-blade
helicopter
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Synchronized Switch Methods

- Originally presented by Richard et al. (1999, 2000)*

Nonlinear treatment of the electrical output of electromechanical system
increases the mechanical to electrical conversion and consequently the shunt
damping effect

SSDS (Synchronized Switch Damping on Short):

Leaves piezoelectric element in open-circuit, except when a local maximum
voltage is detected and the system is switched to short-circuit for a short
period of time

SSDI (Synchronized Switch Damping on Inductor):

- Similar process but the piezoelectric voltage is inverted due to brief switch to
a resonant electrical circuit

*RICHARD, CLAUDE; GUYOMAR, DANIEL; AUDIGIER, D.; CHING, G. Semi-passive damping using continuous
switching of a piezoelectric device. Proceedings of SPIE, v. 3672, pp. 104-111, Newport Beach, CA, USA, 1999.

*RICHARD, CLAUDE; GUYOMAR, DANIEL; AUDIGIER, D.; BASSALER, H. Enhanced semi passive damping using
continuous switching of a piezoelectric device on an inductor. Proceedings of SPIE, v. 3989, pp. 288-299,

2000.
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Semi-active shunt schemes for TS 5 7@

vibratory energy harvesting
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R R L

_1 PZT . PZT

May 2013 Carleton / EESC-USP 12



ANOS

CSH/d)

SSDS scheme

0.5F

04}

0.3f

0.2F

\ SW o
0

01F

— Plezovoltage

02} = Deformation

1

03

(a) SSDS o4

05} 1 1 1 1 1 1 1 1 1 1
082 085 083 083 084 0845 085 085 0886 0835 087

Tme (<)

May 2013 Carleton / EESC-USP 13




SSDI scheme

(b) SSDI
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Electronic breaker circuit
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Semi-active method to damp aeroelastic S 5;@
oscillations of a typical section

Piezoceramic Plunge spring
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Wind tunnel tests
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Flutter speed of the electromechanical

system experimentally verified
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SSDS vs SSDiI flutter control
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Performance of SSDI controller

Flutter speed 11.4% larger than in the original case

Airflow speed of 13.1m/s Airflow speed of 13.5m/s
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Limit-cycle oscillations

- Free-play nonlinearity was added to the pitch DOF
- LCOs are observed below the flutter speed

Airflow speed of 10.4m/s
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SSDS vs SSDI LCO control

0.02

-0.02

Plunge [m]
o
| l | 8 ! |

Pitch [Deg]
o

Voltage [V]

Voltage [V]

100

R
o
S o

39

40.5

41

100}

o

N
o
o

W
©

40.5

41

N SSD

100,
0_
-1007

Voltage [V]

13-12-11

CNAM 2013

(c)

22



T

O A self-powered piezoelectric flutter controller was

experimentally investigated
m Flutter oscillations were suppressed when either SSDS
or SSDI techniques were used
m The flutter speed was 8.5% larger when SSDS technique
was used
m The flutter speed was 11.4% larger when SSDI
technique was used

o Nonlinear aeroelastic oscillations (LCOs) were
observed when free play nonlinearity was added

to the pitch DOF

m LCOs were suppressed when either SSDS or SSDI
techniques were employed
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Mechanical vs electromechanical @cr’a&'f"f“
systems: Is the Smart Spring the ~ °

mechanical realization of the SSDI? CSH/A )
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SSDI technique for typical wing aeroelastic

control:
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Parallel between the “Smart Spring”  ro
and SSDS / SSDI control methods

O Practical realization of the SSDI
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100 Frequency Spectrum Comparision of Blade Root Vibration

calls for a resonance electrical < 50 A |
system that is 10 to 50 times the ¢ | —— S0VderioVpp Cont) |
control target frequency of the E
associated mechanical system £50 J/\\

o In agood “Smart Spring” design, %, N
the resonance frequency associated 'ngo / \
with the secondary path (internal 2" o e
resonance frequency) is high, well i 0 Frequency (i 1° 2
above the target control frequency Resonance frequency >> 13 Hz

m “Smart Spring” is called a stiffness (stiffness dominated system)

modulation system where, by
definition, the resonance frequency
is much higher than the exciting
frequency (w, >> w) and, thus, the
system is defined as stiffness
dominated
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Conclusion
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o The Smart Spring is the mechanical realization of the SSDI
(or SSDS) systems
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For the “"Smart Spring a real variation in the structural stiffness
is introduced by the piezoelectric-driven switching mechanism

For the SSDS and SSDI techniques, the apparent stiffness
variation of the coupled electro-mechanical system, introduced
by the piezoelectric elements between their closed- and open-
circuit conditions (shunt effect), is explored to control vibrations
o Both SSDS and SSDI can be seen as a class of stiffness modulation
(or control) methods
The objective of the "Smart Spring”, SSDS and the SSDI
methods are to artificially increase the operative damping of
electro-mechanical systems at a range of relatively low
frequencies where the dynamics is primarily stiffness dominated
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