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Smart Spring parametric excitation  
reshapes vibration spectrum 
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Neglecting contributions from the 
other harmonics: 
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APL evolution along the SHARCS 
project 

1st Generation (2003) 

2nd Generation (2006) 

3rd Generation (2010) 

Carleton University 
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APL rotating tests 
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7. Whirl Tower Facility 
 

- located at the National Research Council in Ottawa, ON, Canada 
- designed and built by Carleton University and SRS (Fig. 6) 
- commissioned in March 2011 
- main features: 

! wireless telemetry 
! 8-channel slip ring 
! direct drive via 60 HP motor 
! 1-bladed system with fully articulated hub and counterweight 
! aeroelastically scaled blade (R = 1 m) designed and manufactured in-house 

 fully instrumented with 32 strain gauges 
 able to measure fan plot via a novel output only method [12]  

! vibration generated by fan  
 covering about 30 deg of azimuth 
 generating about 12 m/s upwash at 0.8R  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Carleton University and Smart Rotor Systems jointly designed and 

built the first and only Whirl Tower facility in Canada. It was commissioned in March 2011 and is 
located on the grounds of the National Research Council in Ottawa, ON.  
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Fan excitation (transversal flow) 
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Open-loop control performance 
(APL transmitted axial load) 
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1/rev control signal 
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Open-loop control performance 
(APL transmitted axial load) 
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Best result so far – 100 % reduction at 2/rev with little effect at 1/rev: 

1/rev control signal 

13-12-11 CNAM 2013 



Conclusions (1) 
 
 p  Smart Spring concept was proved in experimental 

rotating blade tests 
n  Open-loop parametric stiffness modulation of the blade 

torsion showed almost 100% vibration reduction for 
axial transmitted load in one case! 

n  Repeatable results were obtained 
n  No degradation on the Smart Spring performance was 

noticed after more than 10 hours of tests 
n  Indirect-active device (low power requirement) 
n  Reshapes the transmitted load vibration spectrum 

p  Simulations indicate that closed-loop control can be designed to 
attenuate target frequencies – such as 4/rev in a 4-blade 
helicopter 
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SSDS (Synchronized Switch Damping on Short): 
•  Leaves piezoelectric element in open-circuit, except when a local maximum 

voltage is detected and the system is switched to short-circuit for a short 
period of time 

 
SSDI (Synchronized Switch Damping on Inductor): 
•  Similar process but the piezoelectric voltage is inverted due to brief switch to 

a resonant electrical circuit  
	
  

•  Originally presented by Richard et al. (1999, 2000)* 
 
•  Nonlinear treatment of the electrical output of electromechanical system 

increases the mechanical to electrical conversion and consequently the shunt 
damping effect 

 
Synchronized Switch Methods 
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Semi-active shunt schemes for 
vibratory energy harvesting 
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SSDS SSDI 

Carleton / EESC-USP 



SSDS scheme 
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SSDI scheme 
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SSDS	
  -­‐	
  
Synchronized	
  
Switch	
  Damping	
  

on	
  Short	
  

SSDI	
  -­‐	
  
Synchronized	
  
Switch	
  Damping	
  
on	
  Inductor	
  

Electronic breaker circuit 
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Piezoelectric coupling is considered for the plunge DOF: 

!

!

Semi-active method to damp aeroelastic 
oscillations of a typical section 
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Wind tunnel tests 
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Airflow speed of 11.5 m/s Airflow speed of 12 m/s 

Flutter speed of the electromechanical 
system experimentally verified 
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SSDS vs SSDI flutter control 
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Flutter speed 11.4% larger than in the original case 

Airflow speed of 13.1m/s Airflow speed of 13.5m/s 

Performance of SSDI controller 
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•  Free-play nonlinearity was added to the pitch DOF  
•  LCOs are observed below the flutter speed 

Airflow speed of 10.4m/s 

Limit-cycle oscillations 
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SSDS vs SSDI LCO control 

SSDS 

SSDI 



Conclusions (2) 
 
 p  A self-powered piezoelectric flutter controller was  

experimentally investigated 
n  Flutter oscillations were suppressed when either SSDS 

or SSDI techniques were used 
n  The flutter speed was 8.5% larger when SSDS technique 

was used 
n  The flutter speed was 11.4% larger when SSDI 

technique was used 
p  Nonlinear aeroelastic oscillations (LCOs) were 

observed when free play nonlinearity was added 
to the pitch DOF 
n  LCOs were suppressed when either SSDS or SSDI 

techniques were employed 
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Mechanical vs electromechanical 
systems: Is the Smart Spring the 
mechanical realization of the SSDI? 
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Parallel between the “Smart Spring” 
and SSDS / SSDI control methods 
p  Practical realization of the SSDI 

calls for a resonance electrical 
system that is 10 to 50 times the 
control target frequency of the 
associated mechanical system 

p  In a good “Smart Spring” design, 
the resonance frequency associated 
with the secondary path (internal 
resonance frequency) is high, well 
above the target control frequency 
n  “Smart Spring” is called a stiffness 

modulation system where, by 
definition, the resonance frequency 
is much higher than the exciting 
frequency (ωn >> ω) and, thus, the 
system is defined as stiffness 
dominated 
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Resonance frequency >> 13 Hz 
(stiffness dominated system) 



Conclusion 

p  The Smart Spring is the mechanical realization of the SSDI 
(or SSDS) systems 
n  For the “Smart Spring a real variation in the structural stiffness 

is introduced by the piezoelectric-driven switching mechanism 
n  For the SSDS and SSDI techniques, the apparent stiffness 

variation of the coupled electro-mechanical system, introduced 
by the piezoelectric elements between their closed- and open-
circuit conditions (shunt effect), is explored to control vibrations 

p  Both SSDS and SSDI can be seen as a class of stiffness modulation 
(or control) methods 

n  The objective of the “Smart Spring”, SSDS and the SSDI 
methods are to artificially increase the operative damping of 
electro-mechanical systems at a range of relatively low 
frequencies where the dynamics is primarily stiffness dominated 
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