Olivier Thomas

Portrait de Olivier Thomas
Anciens permanents et ATER



  • Nonlinear dynamics
  • M/NEMS vibration
  • Vibration reduction with piezoelctric devices


  • Mechanisms, contact mechanics
  • Structural vibrations
  • Machine elements
  • Solid mechanics


Revues internationales ACL


  • A. Givois, A. Grolet, O. Thomas, J.-F. Deü, On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models, Nonlinear Dynamics, 97 (2), 1747–1781, 2019. doi

  • 2016

  • O. Thomas, A. Sénéchal, J.-F. Deü, Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams, Nonlinear Dynamics, 86 (2), 1293–1318, 2016. doi

  • 2015

  • D. Dezest, O. Thomas, F. Mathieu, L. Mazenq, C. Soyer, J. Costecalde, D. Remiens, J.-F. Deü, L. Nicu, Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate(PZT), Journal of Micromechanics and Microengineering, 25 (3), 035002 (11 pages), 2015. doi

  • M. Monteil, O. Thomas, C. Touzé, Identification of mode couplings in nonlinear vibrations of the steelpan, Applied Acoustics, 89, 1-15, 2015. doi

  • 2014

  • M. Monteil, C. Touzé, O. Thomas, S. Benacchio, Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: The cases of 1:2:4 and 1:2:2 internal resonances, Nonlinear Dynamics, 75 (1-2), 175-200, 2014. doi

  • 2013

  • O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-McKinstry, L. Nicu, Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities, Applied Physics Letters, 102 (16), 163504 (5 pages), 2013. doi

  • 2012

  • J. Ducarne, O. Thomas, J.-F. Deü, Placement and dimension optimization of shunted piezoelectric patches for vibration reduction, Journal of Sound and Vibration, 331 (14), 3286–3303, 2012. doi

  • C.-H. Lamarque, C. Touzé, O. Thomas, An upper bound for validity limits of asymptotic analytical approaches based on normal form theory, Nonlinear Dynamics, 70 (3), 1931-1949, 2012. doi

  • A. Lazarus, O. Thomas, J.-F. Deü, Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS, Finite Elements in Analysis and Design, 49 (1), 35-51, 2012. doi

  • O. Thomas, J. Ducarne, J.-F. Deü, Performance of piezoelectric shunts for vibration reduction, Smart Materials and Structures, 21 (1), 015008, 2012. doi

Laboratoire de Mécanique des Structures et des Systèmes Couplés - LMSSC